Cho \(\Delta\)ABC có \(\widehat{A}\) = 90o. Vẽ phân giác BD và CE chúng cắt nhau tại O
a) Tính BOC
b) Trên BC lấy M; N sao cho: BM=BA , CN = CA. C/m EN // DM
c) Gọi I là giao điểm của BD và AN. C/m \(\Delta\)AIM vuông cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a góc ABC+góc ACB=90 độ
=>góc OBC+góc OCB=45 độ
=>góc BOC=135 độ
b: ΔBAN cân tại B
mà BD là phân giác
nên BD vuông góc AN
a) Ta có \(\widehat{B}+\widehat{C}=90^o\) mà \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{B}}{2};\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\) nên \(\widehat{B_2}+\widehat{C_2}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{90^o}{2}=45^o\)
Xét tam giác BOC, có \(\widehat{BOC}+\widehat{B_2}+\widehat{C_2}=180^o\Rightarrow\widehat{BOC}=180^o-45^o=135^o\)
b) Xét tam giác BAD và BMD có:
Cạnh BD chung
\(\widehat{B_1}=\widehat{B_2}\)
AB = MB (gt)
\(\Rightarrow\Delta BAD=\Delta BMD\left(c-g-c\right)\)
\(\Rightarrow\widehat{BMD}=\widehat{BAD}=90^o\)
Hoàn toàn tương tự \(\Delta EAC=\Delta ENC\left(c-g-c\right)\Rightarrow\widehat{ENC}=\widehat{EAC}=90^o\)
Ta có EN và DM cùng vuông góc với BC nên EN // DM
c) Theo câu b, \(\Delta BAD=\Delta BMD\Rightarrow AD=MD;\widehat{BDA}=\widehat{BDM}\)
Từ đó ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow OA=OM.\)
Tương tự : \(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow OA=ON.\)
Vậy nên OA = OM = ON
d) Ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow\widehat{OAD}=\widehat{OMD}\)
\(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow\widehat{OAE}=\widehat{ONE}\)
\(\Rightarrow\widehat{ONE}+\widehat{OMD}=\widehat{OAE}+\widehat{OAD}=\widehat{EAD}=90^o\)
\(\Rightarrow\widehat{NOM}=90^o\) (Dạng bài qua O kẻ đường thẳng song song với EN và DM)
Vậy tam giác OMN vuông cân hay \(\widehat{ONM}+\widehat{OMN}=90^o\)
Xét tam giác AMN có \(\widehat{MAN}+\widehat{ANM}+\widehat{AMN}=180^o\)
\(\Leftrightarrow\widehat{MAN}+\widehat{ANO}+\widehat{ONM}+\widehat{AMO}+\widehat{OMN}=180^o\)
\(\Leftrightarrow\widehat{MAN}+\widehat{NAO}+\widehat{MAO}=180^o-90^o=90^o\)
\(\Leftrightarrow\widehat{2MAN}=90^o\)
\(\Leftrightarrow\widehat{MAN}=45^o\)
∆ABC (^A = 90o)
=> ^ABC + ^ACB = 90o (t/c)
Mà ^B1 = ^B2 = ^ABC/2 ( BD là p/g của ^ABC)
^C1 = ^C2 = ^ACB/2 ( CE là p/g của ^ACB)
=> ^B2 + ^C1 = \(\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{90^o}{2}=45^o\)
+Xét ∆BOC có : ^B2 + ^C1 + ^BOC = 180o (đlý)
Mà ^B2 + C1 = 45o
=> ^BOC = 180o - 45o = 135o
b) Xét ∆ABD, ∆MBD có :
BA = BM (gt)
^B1 = ^B2 (câu a)
BD chung
Do đó : ∆ABD = ∆MBD (c-g-c)
=> ^A = ^BMD (góc tương ứng)
Mà ^A = 90o => ^BMD = 90o
=> DM _|_ BC
Cmtt ta cũng có EN _|_ BC
=> DM // EN
c) +Xét ∆ABI , ∆MBI có :
B1 = B2
BI chung
BA = BM (gt)
Do đó : ∆ABI = ∆MBI (c-g-c)
=> AI = MI (2 cạnh tương ứng)
Xét ∆AIM có AI = MI (cmt) => ∆AIM cân
ko ai giải p c à