K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2021

Có :\(\left(x-y\right)⋮11\)=> M\(⋮11\)

       N= \(y^2-x^2\) = \(-\text{(}x^2-y^2\text{)}=-\text{[}\left(x-y\right).\left(x+y\right)\text{]}\)=> N\(⋮11\)

=> M-N \(⋮11\)

Vậy \(M-N⋮11\)(đpcm)

11 tháng 3 2022

A = 3x^3 +6x^2 + 3xy^3

x= 1 phần 2 ;  p = -1 phần 3

A=3.1 phần 2^3 . -1 phần 3     + 6.(1 phần 2)^2 . (-1 Phần 3)^2+3 1 phần 2 . (-1 phần 3)^3

=-1 phần 8      + -1 phần 2 - 1 phần 2

= -1 phần 4

23 tháng 2 2019

a) ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\)

\(D=\frac{4x-5y}{3x+4y}=\frac{3y-5y}{3y+4y-x}=\frac{-2y}{7y-x}=\frac{-2y}{7y-y3:4}\)

\(=\frac{-2y}{\frac{25}{4}y}=-2y:\left(\frac{25}{4}y\right)=-\frac{8}{25}\)

23 tháng 2 2019

b) ta có: M=3x.(x-y) chia hết cho 11

N = y2 - x2 = y2 - xy - x2 + xy = y.(y-x) - x.(x-y) = (y-x).(y+x) = - (x-y).(y+x) chia hết cho 11

=> M-N chia hết cho 11 (đpcm)

23 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(3+1\right)\left(3x^2+y^2\right)\ge\left(3x+y\right)^2\)

\(\Rightarrow4\left(3x^2+y^2\right)\ge\left(3x+y\right)^2\)

\(\Rightarrow4\left(3x^2+y^2\right)\ge\left(3x+y\right)^2=1^2=1\)

\(\Rightarrow M=3x^2+y^2\ge\dfrac{1}{4}\)

Đẳng thức xảy ra khi \(x=y=\dfrac{1}{4}\)

NV
3 tháng 9 2020

\(49=\left(3x-4y\right)^2=\left(\sqrt{3}.\sqrt{3}x-2.2y\right)^2\le\left(3+4\right)\left(3x^2+4y^2\right)\)

\(\Rightarrow3x^2+4y^2\ge7\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3x-4y=7\\x=-y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

4 tháng 10 2022

thầy viết chi tiết hơn đc k ạ em vẫn chx hiểu lắm

 

 

16 tháng 12 2020

Ta có: \(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)

\(\Leftrightarrow3x-y+2x+y=10z\)

\(\Leftrightarrow5x=10z\)

hay x=2z

Thay x=2z vào biểu thức 3x-y=3z, ta được:

\(3\cdot2z-y=3z\)

\(\Leftrightarrow6z-y=3z\)

hay y=3z

Thay x=2z và y=3z vào biểu thức \(M=\dfrac{x^2-2xy}{x^2+y^2}\), ta được:

\(M=\dfrac{\left(2z\right)^2-2\cdot2z\cdot3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{13z^2}=\dfrac{-8z^2}{13z^2}=\dfrac{-8}{13}\)

Vậy: \(M=\dfrac{-8}{13}\)

16 tháng 12 2020

\(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5x=10z\\3x-y=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2z\\3.2z-y=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=3.2z-3z=6z-3z=3z\end{matrix}\right.\)

Có: \(M=\dfrac{x^2-2xy}{x^2+y^2}=\dfrac{\left(2z\right)^2-2.2z.3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{4z^2+9z^2}=\dfrac{-8z^2}{13z^2}==-\dfrac{8}{13}\)

 

28 tháng 4 2018

3x + y = 1

⇒ y = 1 - 3x

Ta có : M = 3x2 + y2

M = 3x2 + ( 1 - 3x)2

M = 3x2 + 1 - 6x + 9x2

M = 12x2 - 6x + 1

M = 12( x2 - 2.\(\dfrac{1}{4}\) \(+\dfrac{1}{16}+1-\dfrac{1}{16}\))

M = 12\(\left(x-\dfrac{1}{4}\right)^2\) + \(\dfrac{45}{4}\)

Do : 12\(\left(x-\dfrac{1}{4}\right)^2\) ≥ 0 ∀x

⇒ 12\(\left(x-\dfrac{1}{4}\right)^2\) + \(\dfrac{45}{4}\)\(\dfrac{45}{4}\) ∀x

⇒ MMIN = \(\dfrac{45}{4}\)\(x=\dfrac{1}{4}\)

a: \(M=x^3+x^2-y^3+y^2+xy-3xy-95\)

\(=\left(x-y\right)^3+\left(x-y\right)^2-95\)

\(=7^3+7^2-95=297\)

b: \(N=3\left[\left(x+y\right)^2-2xy\right]-2\left(x+y\right)+6xy-100\)

\(=3\cdot\left(25-2xy\right)-10+6xy-100\)

=75-6xy-10+6xy-100

=-35