Cho khối lăng trụ ABC. A'B'C' có thể tích bằng 2018. Gọi M là trung điểm AA' ; N, P lần lượt là các điểm nằm trên các cạnh BB', CC' sao cho BN=2B'N, CP=3C'P. Tính thể tích khối đa diện ABC. MNP.
A. 32288 27
B. 40360 27
C. 4036 3
D. 23207 18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
V A B C . M N K = S A B C . C K = 2 3 S A B C . A ' A
V
C
'
M
K
=
1
3
C
'
K
.
S
=
1
9
C
'
C
'
S
A
B
C
=
1
9
A
'
.
A
.
S
A
B
C
⇒
V
2
=
V
A
B
C
.
M
N
K
+
V
C
'
.
M
N
K
=
2
3
S
A
B
C
.
A
A
'
+
1
9
A
'
A
.
S
A
B
C
=
7
9
A
'
A
.
S
A
B
C
V
M
N
K
A
'
B
'
C
'
=
S
M
N
K
.
C
'
K
=
1
3
S
A
B
C
.
A
'
A
⇒ V 1 = V M N K A ' B ' C ' - V C ' M N K = 1 3 S A B C . A ' A - 1 9 A ' A S A B C = 2 9 A ' A S A B C
Vậy : V 1 V 2 = 2 9 A ' A S A B C 7 9 A ' A S A B C = 2 7 .
Chọn B
Gọi E, F lần lượt là các trung điểm của AA' và BB' khi đó ta có:
Vậy mặt phẳng (C'EF) chia khối lăng trụ thành hai phần có tỉ số thể tích bằng 1 2 .
Do \(AA'\text{/ / }CC'\Rightarrow AA'\) tạo với (ABC) một góc \(45^o\)
Mà \(A'H\text{⊥}\left(ABC\right)\Rightarrow\widehat{A'AH}\) là góc giữa \(AA'\) và ( ABC)
\(\Rightarrow\widehat{A'AH=45^o\Rightarrow}\Delta A'AH\) vuông cân tại H
\(\Rightarrow A'H=AH=\dfrac{AB}{2}=\dfrac{a}{2}\)
\(^SABC=\dfrac{a^2\sqrt{3}}{4}=V=^SABC.^{A'H}=\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^3.\sqrt{3}}{8}\)
Chọn D
Gọi D, E, F lần lượt là trung điểm của AA', BB', CC' và h là độ dài chiều cao của khối lăng trụ ABC. A'B'C'. Khi đó ta có:
Chọn D