K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

TA XÉT 2 TAM GIÁC BDC VÀ TAM GIÁC CEB CÓ

BC LÀ CẠNH HUYỀN CHUNG

GÓC E=GÓC D

EC=BD

=>TAM GIÁC BDC = TAM GIÁC CEB (CH GN)

B,XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ

GÓC E= GÓC D

A CHUNG

GÓC B=GÓC C

=>TAM GIÁC ADB = TAM GIÁC AEC (GCG)

=>AE=AD=>TAM GIÁC ADE CÂN TẠI A

16 tháng 4 2022

Cứu tớ vsss:<

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đo: ΔABD=ΔACE

b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

Do đó: ΔAEI=ΔADI

Suy ra: \(\widehat{EAI}=\widehat{DAI}\)

hay AI là tia phân giác của góc BAC

Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường cao

15 tháng 3 2023

Có chỗ nào không hiểu thì hỏi b nhé

loading...

18 tháng 3 2022

Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)

góc ABC = góc ACB ( cân tại A)

BC chung 

==> BD=CE

 

18 tháng 3 2022

b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên 

góc BCE = góc DBC

--> IBC cân tại I

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔAED có AE=AD

nên ΔAED cân tại A

c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có 

EB=DC

\(\widehat{EBI}=\widehat{DCI}\)

Do đó; ΔEBI=ΔDCI

Suy ra: IB=IC

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

26 tháng 1 2022

Mình cảm ơn cậu nhé

20 tháng 2 2021

image

Chúc bạn học tốt

a) Xét ΔAMB vuông tại M và ΔAMC vuông tại M có 

AB=AC(ΔABC cân tại A)

AM chung

Do đó: ΔAMB=ΔAMC(cạnh huyền-cạnh góc vuông)

Suy ra: MB=MC(hai cạnh tương ứng)

b) Ta có: ΔAMB=ΔAMC(cmt)

nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

c) Xét ΔDMB vuông tại D và ΔEMC vuông tại E có 

MB=MC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDMB=ΔEMC(cạnh huyền-góc nhọn)

Suy ra: DM=EM(hai cạnh tương ứng)

Xét ΔMDE có MD=ME(cmt)

nên ΔMDE cân tại M(Định nghĩa tam giác cân)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE và AD=AE

b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có 

BC chung

EB=DC

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{ECB}=\widehat{DBC}\)

=>\(\widehat{HBC}=\widehat{HCB}\)

hay ΔHBC cân tại H

c: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: HB=HC

nên H nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AH là đường trung trực của BC

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔAEC

=>BD=CE

b: góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: AB=AC

HB=HC

=>AH là trung trực của BC

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔADB=ΔAEC

Suy ra: AD=AE

b: Ta có: \(\widehat{ABC}=\widehat{ABD}+\widehat{OBC}\)

\(\widehat{ACB}=\widehat{ACE}+\widehat{OCB}\)

mà \(\widehat{ABC}=\widehat{ACB}\)

và \(\widehat{ABD}=\widehat{ACE}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOCB cân tại O