K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2022

a: BC=5

AH=3*4/5=2,4

BH=3^2/5=1,8

b: Vì BH vuông góc với AH tại H

nênBC là tiếp tuyến của (A;AH)

c: Xét (A) có

BH,BI là các tiếp tuyến

nên BH=BI và AB là phân giác của góc HAI(1)

Xét (A) có

CH,CK là các tiếp tuyến

nên CH=CK và AC là phân giác của góc HAK(2)

BC=BH+CH

=>BC=BI+CK

Từ (1),(2) suy ra góc KAI=2*90=180 độ

=>K,A,I thẳng hàng

16 tháng 12 2021

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

3 tháng 9 2020

Hình vẽ chung cho cả ba bài.

Bài 1:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)

\(\Rightarrow AH^2=144\Rightarrow AH=12\)

\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)

\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)

\(\Rightarrow BC=BH+CH=9+16=25\)

Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.

3 tháng 9 2020

Bài 2:                                                    Bài giải

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)

Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

AH
Akai Haruma
Giáo viên
9 tháng 7 2023

Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông: 

$144=AH^2=BH.HC(1)$

$BH+CH=BC=25(2)$

Từ $(1); (2)$ áp dụng định lý Viet đảo thì $BH, CH$ là nghiệm của pt: $x^2-25x+144=0$

$\Rightarrow BH, CH= (16,9)$

Mà $AB< AC$ nên $BH< CH$

$\Rightarrow BH=9; CH=16$ (cm) 

$AB=\sqrt{BH^2+AH^2}=\sqrt{9^2+12^2}=15$ (cm) 

$AC=\sqrt{CH^2+AH^2}=\sqrt{16^2+12^2}=20$ (cm)

b. 

$AM=\frac{BC}{2}=\frac{25}{2}$ (cm) 

$\sin \widehat{AMH}=\frac{AH}{AM}=\frac{24}{25}$

$\Rightarrow \widehat{AMH}\approx 74^0$

c. 

$HM=\sqrt{AM^2-AH^2}=\sqrt{(\frac{25}{2})^2-12^2}=3,5$ (cm) 

$S_{AHM}=\frac{AH.HM}{2}=\frac{12.3,5}{2}=21$ (cm2)

AH
Akai Haruma
Giáo viên
9 tháng 7 2023

Hình vẽ:

loading...

a: BC=10cm

AH=6*8/10=4,8cm

BH=AB^2/BC=3,6cm

b: Vì BH vuông góc với AH tại H

nên CB là tiếp tuyến của (A';AH)

a: Đặt BH=x; CH=y(x<y)

Theo đề, ta có: xy=12^2=144 và x+y=48

=>x,y là các nghiệm của phương trình:

x^2-48x+144=0

=>x=24-12 căn 3 hoặc x=24+12căn 3

=>BH=24-12căn 3 và CH=24+12căn 3

\(AB=\sqrt{\left(24-12\sqrt{3}\right)\cdot48}\simeq12,42\left(cm\right)\)

\(AC=\sqrt{\left(24+12\sqrt{3}\right)\cdot48}\simeq46,36\left(cm\right)\)

b: AM=BC/2=24cm

sin AMH=AH/AM=12/24=1/2

=>góc AMH=30 độ

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}=\dfrac{1}{9}+\dfrac{1}{16}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{16}{144}+\dfrac{9}{144}=\dfrac{25}{144}\)

\(\Leftrightarrow AH^2=\dfrac{144}{25}\)

hay \(AH=\dfrac{12}{5}=2.4\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=3^2-2.4^2=3.24\)

hay BH=1,8

Vậy: AH=2,4; BH=1,8

b) Xét (A;AH) có 

AH là bán kính

CH⊥AH tại H(gt)

Do đó: CH là tiếp tuyến của (A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

hay CB là tiếp tuyến của (A;AH)(đpcm)

c) 

1) Xét (A) có 

CH là tiếp tuyến có H là tiếp điểm(cmt)

CK là tiếp tuyến có K là tiếp điểm(gt)

Do đó: CH=CK(Tính chất hai tiếp tuyến cắt nhau)

Xét (A) có 

AH là bán kính

BH⊥AH tại H(gt)

Do đó: BH là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

Xét (A) có 

BH là tiếp tuyến có H là tiếp điểm(cmt)

BI là tiếp tuyến có I là tiếp điểm(gt)

Do đó: BH=BI(Tính chất hai tiếp tuyến cắt nhau)

Ta có: BH+CH=BC(H nằm giữa B và C)

mà BH=BI(cmt)

và CH=CK(cmt)

nên BC=BI+CK(đpcm)

2) Xét (A) có 

BH là tiếp tuyến có H là tiếp điểm(cmt)

BI là tiếp tuyến có I là tiếp điểm(gt)

Do đó: AB là tia phân giác của \(\widehat{HAI}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{HAI}=2\cdot\widehat{HAB}\)

Xét (A) có 

CK là tiếp tuyến có K là tiếp điểm(gt)

CH là tiếp tuyến có H là tiếp điểm(cmt)

Do đó: AC là tia phân giác của \(\widehat{HAK}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{HAK}=2\cdot\widehat{CAH}\)

Ta có: \(\widehat{KAI}=\widehat{KAH}+\widehat{IAH}\)(tia AH nằm giữa hai tia AK,AI)

mà \(\widehat{HAI}=2\cdot\widehat{HAB}\)(cmt)

và \(\widehat{HAK}=2\cdot\widehat{CAH}\)(cmt)

nên \(\widehat{KAI}=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)

\(\Leftrightarrow\widehat{KAI}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

\(\Leftrightarrow\widehat{KAI}=2\cdot90^0=180^0\)

hay K,A,I thẳng hàng(đpcm)

16 tháng 12 2021

Bài 2: 

a: Xét (E) có 

DF⊥DE tại D

nên DF là tiếp tuyến của (E;ED)

30 tháng 11 2021

1: BC=5cm

AH=2,4cm

22 tháng 11 2021

a. \(BC^2=AB^2+AC^2\) nên ABC vuông tại A

b. Hệ thức lượng: \(AH=\dfrac{AB\cdot AC}{BC}=2,4\left(cm\right)\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx37^0\)

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=8\left(cm\right)\\AC=6\left(cm\right)\\AH=4,8\left(cm\right)\end{matrix}\right.\)

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)