Cho tam giác ABC có AB=AC.Tia phân giác của góc A cắt BC tại H. Kẻ HD vuông góc với AB tại D; Kẻ HE vuông góc với AC tại E.
Chứng minh rằng
a)Tam giác ABH= Tam giác ACH
b)AH vuông góc với AC ; góc BHD= góc BAH
c)DE song song với BC
Chỉ cần câu c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC cân tại A có AD là đường phân giác ứng với cạnh đáy BC
nên AD là đường trung trực ứng với cạnh BC
b: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
\(\widehat{MAD}=\widehat{NAD}\)
Do đó: ΔAMD=ΔAND
Suy ra: AM=AN
Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Do đó: MN//BC
a) Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)(tia AM là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHM=ΔAKM(cạnh huyền-góc nhọn)
b) Sửa đề: Chứng minh HK vuông góc với AM
Ta có: ΔAHM=ΔAKM(cmt)
nên AH=AK(Hai cạnh tương ứng)
Ta có: ΔAHM=ΔAKM(cmt)
nên HM=KM(hai cạnh tương ứng)
Ta có: AH=AK(cmt)
nên A nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: HM=KM(cmt)
nên M nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của HK
hay AM\(\perp\)HK(đpcm)
A B C D H K 1 2
a) Xét \(\Delta ADB\)và \(\Delta ADC\)có :
AD ( cạnh chung )
\(\widehat{A_1}=\widehat{A_2}\)( vì AD là tia phân giác )
AB = AC ( gt )
suy ra \(\Delta ADB\)= \(\Delta ADC\)( c.g.c )
b) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)( 2 góc tương ứng ) ( theo câu a )
Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)
\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AD\perp BC\)
c) vì \(\Delta ADB\)= \(\Delta ADC\)( theo câu a )
\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )
\(\Rightarrow\widehat{ABD}=\widehat{ACD}\)( 2 góc tương ứng )
Mà \(\widehat{ABD}+\widehat{BDH}=90^o\); \(\widehat{ACD}+\widehat{CDK}=90^o\)
\(\Rightarrow\widehat{BDH}=\widehat{CDK}\)
Xét \(\Delta HBD\)và \(\Delta KCD\)có :
\(\widehat{BDH}=\widehat{CDK}\)( cmt )
BD = CD ( cmt )
\(\widehat{ABD}=\widehat{ACD}\)( cmt )
suy ra \(\Delta HBD\)= \(\Delta KCD\)( g.c.g )
\(\Rightarrow DH=DK\)( 2 cạnh tương ứng )
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
BA=BH
Do đó: ΔBAD=ΔBHD
Suy ra: \(\widehat{ABD}=\widehat{HBD}\)
hay BD là tia phân giác của góc ABC
b: Ta có: AD=DH
mà DH<DC
nên AD<DC
c: Xét ΔADI vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADI}=\widehat{HDC}\)
Do đó: ΔADI=ΔHDC
Suy ra: AI=HC
Ta có: BA+AI=BI
BH+HC=BC
mà BA=BH
và AI=HC
nên BI=BC
hay ΔIBC cân tại I
a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có
BM chung
\(\widehat{ABM}=\widehat{HBM}\)
Do đó: ΔABM=ΔHBM
Suy ra: MA=MH
b: Ta có: MA=MH
mà MH<MC
nên MA<MC
Muốn DE song song BC: ta theo từ vuông góc đến song song
Với AH vuông góc BC
Xét tam giác như câu A ta có AHB = AHC- kề bù- bằng nhau> vuông góc
Với AH vuông góc DE
Đặt tên I là giao điểm của AH và DE
Ta xét tam giác ADH và AHE = nhau do(cạnh huyền - cạnh góc vuông)
Ta có: DHI = EHI và DH=HEvà HI cạnh chung
bằng nhau xong ta có
DIH=EIH mà kề bù-bằng nhau> vuông góc
Cả hai vuông vs AH thì kết luận Từ vuông góc đến song song