K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2015

Muốn DE song song BC: ta theo từ vuông góc đến song song

Với AH vuông góc BC

Xét tam giác như câu A ta có AHB = AHC- kề bù- bằng nhau> vuông góc

Với AH vuông góc DE

Đặt tên I là giao điểm của AH và DE

Ta xét tam giác ADH và AHE = nhau do(cạnh huyền - cạnh góc vuông)

Ta có: DHI = EHI và DH=HEvà HI cạnh chung

bằng nhau xong ta có 

DIH=EIH mà kề bù-bằng nhau> vuông góc

Cả hai vuông vs AH thì kết luận Từ vuông góc đến song song

 

 

 

a: Xét ΔABC cân tại A có AD là đường phân giác ứng với cạnh đáy BC

nên AD là đường trung trực ứng với cạnh BC

b: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

\(\widehat{MAD}=\widehat{NAD}\)

Do đó: ΔAMD=ΔAND

Suy ra: AM=AN

Xét ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Do đó: MN//BC

a) Xét ΔAHM vuông tại H và ΔAKM vuông tại K có 

AM chung

\(\widehat{HAM}=\widehat{KAM}\)(tia AM là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHM=ΔAKM(cạnh huyền-góc nhọn)

b) Sửa đề: Chứng minh HK vuông góc với AM

Ta có: ΔAHM=ΔAKM(cmt)

nên AH=AK(Hai cạnh tương ứng)

Ta có: ΔAHM=ΔAKM(cmt)

nên HM=KM(hai cạnh tương ứng)

Ta có: AH=AK(cmt)

nên A nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: HM=KM(cmt)

nên M nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của HK

hay AM\(\perp\)HK(đpcm)

27 tháng 12 2017

A B C D H K 1 2

a) Xét \(\Delta ADB\)và \(\Delta ADC\)có :

AD ( cạnh chung )

\(\widehat{A_1}=\widehat{A_2}\)( vì AD là tia phân giác )

AB = AC ( gt )

suy ra \(\Delta ADB\)\(\Delta ADC\)( c.g.c )

b) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)( 2 góc tương ứng )                         ( theo câu a )

Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)

\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AD\perp BC\)

c) vì \(\Delta ADB\)\(\Delta ADC\)( theo câu a )

\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )

\(\Rightarrow\widehat{ABD}=\widehat{ACD}\)( 2 góc tương ứng )

Mà \(\widehat{ABD}+\widehat{BDH}=90^o\)\(\widehat{ACD}+\widehat{CDK}=90^o\)

\(\Rightarrow\widehat{BDH}=\widehat{CDK}\)

Xét \(\Delta HBD\)và \(\Delta KCD\)có :

\(\widehat{BDH}=\widehat{CDK}\)( cmt )

BD = CD ( cmt )

\(\widehat{ABD}=\widehat{ACD}\)( cmt )

suy ra \(\Delta HBD\)\(\Delta KCD\)( g.c.g )

\(\Rightarrow DH=DK\)( 2 cạnh tương ứng )

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

BA=BH

Do đó: ΔBAD=ΔBHD

Suy ra: \(\widehat{ABD}=\widehat{HBD}\)

hay BD là tia phân giác của góc ABC

b: Ta có: AD=DH

mà DH<DC

nên AD<DC

c: Xét ΔADI vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADI}=\widehat{HDC}\)

Do đó: ΔADI=ΔHDC

Suy ra: AI=HC

Ta có: BA+AI=BI

BH+HC=BC

mà BA=BH

và AI=HC

nên BI=BC

hay ΔIBC cân tại I

a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có

BM chung

\(\widehat{ABM}=\widehat{HBM}\)

Do đó: ΔABM=ΔHBM

Suy ra: MA=MH

b: Ta có: MA=MH

mà MH<MC

nên MA<MC

27 tháng 2 2021
1488637396_6002.jpgBn tham khảo nhé !!!
27 tháng 2 2021

DN\(\perp\)BC tại N,sao bài làm của Tâm An lại ghi là E ?

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0