cho tam giac ABC co AB<AC,M la trung diem cua BC.tren doan thang AM lay diem I bat ki(I \(\ne\)A;I\(\ne\)M)lay diem D tren tia doi cua MA sao cho MD=MI
a.chung minh tam giac MIB=MDC
b/Chung minh BI song song DC,BD song song IC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ADB\) và \(\Delta ADE\) có :
AB=AE(gt)
\(\widehat{DAB}=\widehat{DAE}\left(gt\right)\)
Cạnh AD(chung)
\(\Rightarrow\Delta ADB=\Delta ADE\left(c-g-c\right)\)
Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=30^0\)
Xét ΔABC vuông tại A có
\(BC=AB:\sin30^0=6:\dfrac{1}{2}=12\left(cm\right)\)
\(\Leftrightarrow AC=6\sqrt{3}\left(cm\right)\)
Giải:
a, Ta có: \(AB^2+AC^2=6^2+8^2=100\)
\(BC^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( đpcm )
b, \(\Delta ABC\) vuông tại A có AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow AM=5\)
Mà \(AG=\dfrac{2}{3}.AM\Rightarrow AG=\dfrac{10}{3}\left(cm\right)\)
Vậy...
Áp dụng định lí Py-ta-go trong tam giác ABC
Ta có: 32+42=9+16=25(cm)
=>BC=\(\sqrt{25}\)=5(cm)
Vậy tam giác ABC là tam giác vuông tại A
a) Xét t/g MIB và t/g MDC có:
MB = MC (gt)
BMI = CMD ( đối đỉnh)
IM = DM (gt)
Do đó, t/g MIB = t/g MDC (c.g.c) (đpcm)
b) t/g MIB = t/g MDC (câu a)
=> MIB = MDC (2 góc tương ứng)
Mà MIB và MDC là 2 góc ở vị trí so le trong nên BI // DC (1)
Xét t/g IMC và t/g DMB có:
MC = MB (gt)
IMC = DMB ( đối đỉnh)
IM = DM (gt)
Do đó, t/g IMC = t/g DMB (c.g.c)
=> ICM = DBM (2 góc tương ứng)
Mà ICM và DBM là 2 góc ở vị trí so le trong nên IC // BD (2)
(1) và (2) là đpcm