K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

a) Áp dụng định lí Pi-ta-go vào tam giác ABC vuông tại A có:

               AB2  +   AC2    = BC2

=>    32      +    42       =  BC2

=>   BC2  =   25

=>  BC= 5 cm

b) Áp dụng định lí Pi-ta-go vào tam giác AHB vuông tại H có:

           HB2    +      HA2  =   AB2

=>  HB2 = AB2 - HA2

=> HB2  =  9  -  HA                  (1)

Áp dụng định lí Pi-ta-go vào tam giác AHC vuông tại H có:

          HC2       +    HA2  =  AC2   

 => HC2  =  AC2 - HA2

=> HC2\(\sqrt{HC}\) = 16 -  HA2                      (2)

 Từ (1) và (2) =>  HC2 > HB2 => HC > HB

c) Xét tam giác ACD có:

          AH là đường cao của tam giác ACD  ( AH vuông góc BC )

          AH là đường trung tuyến của tam giác ACD ( HB = HA)

=> tam giác ACD cân tại A (tam giác có 2 trong 4 đường: trung trực, trung tuyến, phân giác, đường cao trùng nhau là tam giác cân)

     CHO MK HỎI ĐIỂM I Ở ĐÂU VẬY! TỰ NHIÊN CÂU D CÓ ĐIỂM I

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC

nên HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

d: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

hay BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)

Do đó: BD=15/7(cm); CD=20/7(cm)

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC

=>HA^2=HB*HC

31 tháng 3 2022

a, Xét ΔHBA và ΔABC có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)

\(\Rightarrow AB.AC=BC.AH\)

b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)

hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)

\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)

30 tháng 3 2022

undefinedundefined

30 tháng 3 2022

Câu b mik làm nhầm r nha 

21 tháng 12 2021

a: BC=5cm

AH=2,4cm

BH=1,8cm

CH=3,2cm

21 tháng 4 2022

a, Áp dụng định lý Pytago :

ta có : \(BC^2=AC^2+AB^2\)

           \(BC^2=3^2+4^2\)

           \(BC^2=9+16=25=5^2\)

       =>\(BC=5^{ }\)

b, Áp dụng định lý trong một tam giác gốc đối diện với cạnh lớn hơn là góc lớn hơn

Có : Trong tam giác ABC có BC=5, AC=4, AB=3

=> góc A > góc B > góc C 

Vậy góc B > góc C

c, Xét △BIC và △AIC có

góc \(C_1=C_2\)

BAC = KHC = 90 độ

IC cạnh chung

=> △HIC = △AIC

Xét △HIB và △KIA có

IH = IA (cmt)

\(I_1=I_2\)( đối đỉnh)

Góc A = góc H = 90 độ

=> △HIB = △AIK

Vậy cạnh AK = BH

a: HB=HC=căn 10^2-8^2=6cm

b: Xét ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD can tại B

NV
10 tháng 4 2022

a.

Xét hai tam giác vuông HBA và ABC có:

\(\left\{{}\begin{matrix}\widehat{ABH}\text{ chung}\\\widehat{AHB}=\widehat{BAC}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g.g\right)\)

\(\Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow AB^2=BH.BC\)

b.

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=30\left(cm\right)\)

Áp dụng định lý phân giác:

\(\dfrac{AD}{AC}=\dfrac{BD}{BC}\Rightarrow\dfrac{AD}{24}=\dfrac{18-AD}{30}\)

\(\Rightarrow AD=8\left(cm\right)\)

NV
10 tháng 4 2022

undefined

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA∼ΔHAC

c: Ta có: ΔHBA∼ΔHAC

nên HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)