Bài 1:
Một đường thẳng đi qua A của hình bình hành ABCD cắt BD;BC;DC theo thứ tự là E;K;G
CM
a) AE2=EK.EG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔOAM và ΔOCP có
góc OAM=góc OCP
OA=OC
góc AOM=góc COP
=>ΔOAM=ΔOCP
=>OM=OP
=>O là trung điểm của MP
Xét ΔOQD và ΔONB có
góc ODQ=góc OBN
OD=OB
góc QOD=góc NOB
=>ΔOQD=ΔONB
=>OQ=ON
=>O là trung điểm của QN
Xét tứ giác MNPQ có
O là trung điểm chung của MP và NQ
=>MNPQ là hbh
a) vì tứ giác ABCD là hình bình hành
=> AB // CD
=>AB // DG
=> \(\frac{EB}{ED}\)= \(\frac{AE}{EG}\) (1)
vì ABCD là hình bình hành
=> AD // BC
=> AD // BK
=>\(\frac{AE}{EG}\)= \(\frac{EK}{AE}\) (2)
TỪ (1) VÀ (2) => \(\frac{AE}{EG}\)= \(\frac{EK}{AE}\)
=> AE2 = EK . EG (đpcm)
b) vì AB // DG => \(\frac{AE}{AG}\)= \(\frac{BE}{BD}\)
MÀ AD // BK => \(\frac{AE}{AK}\)= \(\frac{DE}{BD}\)
CỘNG 2 VẾ TRÊN
=> \(\frac{AE}{AG}\)+ \(\frac{AE}{AK}\) = \(\frac{BE}{BD}+\frac{DE}{BD}=1\)
<=> AE ( \(\frac{1}{AG}+\frac{1}{AK}\)) = 1
<=> \(\frac{1}{AG}+\frac{1}{AK}\)= \(\frac{1}{AE}\) (đpcm)
c) vì AD // BK => \(\frac{BK}{AD}=\frac{EB}{DE}\)
CÓ AB // DG => \(\frac{AB}{DG}=\frac{BE}{DE}\)
=> \(\frac{BK}{AD}=\frac{AB}{DG}\)
=> BD . DG = AB . AD
mà AB, AD là các cạnh của hình bình hành ABCD => AB . AD không đổi
=> BK . DG không đổi (đpcm)
a) Ta thấy \(\dfrac{EA}{EK}=\dfrac{ED}{EB}=\dfrac{EG}{EA}\) nên \(AE^2=EK.EG\) (đpcm)
b) Ta có \(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{BD}=\dfrac{DE+BE}{BD}=1\) nên suy ra \(\dfrac{1}{AE}=\dfrac{1}{AK}+\dfrac{1}{AG}\) (đpcm)
Mk ms nghĩ được phần a thôi, phần b để tí nghĩ tiếp :v
(Hình tự vẽ)
Vì ABCD là hình bình hành (gt)
\(\Rightarrow\) AD//BC (t/c hbh)
Mà M \(\in\) BC (d cắt BC tại M)
\(\Rightarrow\) AD//MB
\(\Rightarrow\) \(\widehat{DAN}=\widehat{AMB}\) (2 góc slt, N \(\in\) AM)
Vì ABCD là hbh (gt)
\(\Rightarrow\) \(\widehat{B}=\widehat{D}\) (t/c hbh)
Xét tam giác ADN và tam giác MBA có:
\(\widehat{D}=\widehat{B}\) (cmt)
\(\widehat{DAN}=\widehat{BMA}\) (cmt)
\(\Rightarrow\) \(\Delta\)ADN \(\sim\) \(\Delta\)MBA (gg)
\(\Rightarrow\) \(\dfrac{AD}{BM}=\dfrac{DN}{AB}\) (tỉ số đồng dạng)
\(\Rightarrow\) BM.DN = AB.AD
Mà AB, AD là các cạnh của hbh (gt)
\(\Rightarrow\) AB, AD không đổi
\(\Rightarrow\) AB.AD không đổi
\(\Rightarrow\) MB.DN không đổi (đpcm)
Chúc bn học tốt!