Giúp mình nhé tks !
1)Cho tam giác MIN có E là trung điểm của IM;EF//MN(F thuộc NI)
a)CMR:FI=FN
b)Biết MN2 + EF2 =50.Tính MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔOPQ có
I là trung điểm của PQ
IN//OP
Do đó: N là trung điểm của OQ
Xét ΔOPQ có
I là trung điểm của PQ
IM//OQ
Do đó: M là trung điểm của OP
Xét ΔMPI và ΔNQI có
MP=NQ
\(\widehat{P}=\widehat{Q}\)
PI=QI
Do đó: ΔMPI=ΔNQI
Suy ra: IM=IN
hay ΔIMN cân tại I
2: Ta có: OM=ON
nên O nằm trên đường trung trực của MN(1)
Ta có: IM=IN
nên I nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OI là đường trung trực của MN
b+c-a > 0
a + c - b > 0
a + b - c > 0
Đặt b + c - a = x ; a + c - b = y ; a + b - c = z
=> x + y / 2 = c
y+z/2 = a
x+z/2 = b
Khi đó , P = \(\frac{4\frac{\left(y+z\right)}{2}}{x}+\frac{9\frac{x+z}{2}}{y}+\frac{16\frac{x+y}{2}}{z}\)
\(=\frac{1}{2}\left[\frac{4\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{y}+\frac{16\left(x+y\right)}{z}\right]\)
\(=\frac{1}{2}\left[\left(\frac{4y}{x}+\frac{9x}{y}\right)+\left(\frac{4z}{x}+\frac{16x}{z}\right)+\left(\frac{9z}{y}+\frac{16y}{z}\right)\right]\)
Tới đây dễ rồi nha , áp dụng bđt cô - si nha anh
A D B C E
S(ADC) = S(DBC) vì có đáy AD = DB và có chung đường cao tương ứng với 2 đáy đó.
Nên S(ADC) = 1/2 S(ABC) = 66 : 2 = 33 cm2
S(ADE) = 2 x S(EDC) vì có đáy AE = 2 x EC và có chung đường cao tương ứng với 2 đáy đó.
Mà S(ADE) = S(ADC) - S(EDC)
Nên S(ADC) = 2/3 S(ADC) = 2/3 x 33 = 22 cm2
Vậy DT tam giác ADE bằng 22 cm2
a: Xét hình thang ADCB có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của CB
Xét tứ giác MNCD có
MD//CN
MD=CN
Do đó: MNCD là hình bình hành
mà DM=DC
nên MNCD là hình thoi