Qua A nằm ngoài (O) kẻ 2 cát tuyến ABC,ADE tới (O) (B nằm giữa A và C; D nằm giữa A và E ). Kẻ dây BF//DE C/m
a) \(\widehat{DBF}=\widehat{DBC}\)
b)\(\Delta ACE=\Delta DCF\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại trung điểm H của BC
Gọi K là giao điểm của OS và ED
Xét (O) có
SE,SD là các tiếp tuyến
Do đó: SE=SD
=>S nằm trên đường trung trực của ED(3)
Ta có: OE=OD
=>O nằm trên đường trung trực của ED(4)
Từ (3) và (4) suy ra SO là đường trung trực của ED
=>SO\(\perp\)ED tại trung điểm K của ED
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\left(5\right)\)
Xét ΔODS vuông tại D có DK là đường cao
nên \(OK\cdot OS=OD^2=R^2\left(6\right)\)
Từ (5) và (6) suy ra \(OH\cdot OA=OK\cdot OS\)
=>\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)
Xét ΔOHS và ΔOKA có
\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)
góc HOS chung
Do đó: ΔOHS đồng dạng với ΔOKA
=>\(\widehat{OHS}=\widehat{OKA}\)
=>\(\widehat{OHS}=90^0\)
=>HO\(\perp\)SH tại H
mà HO\(\perp\)BH tại H
và SH,BH có điểm chung là H
nên S,H,B thẳng hàng
mà H,B,C thẳng hàng
nên S,B,H,C thẳng hàng
=>S,B,C thẳng hàng
a) Do AB, AC tiếp xúc (O) tại B, C nên \(\widehat{OBA}=90^o\) và \(OA\perp BC\) tại H.
Xét tam giác OAB vuông tại B có đường cao BH, ta có \(OB^2=OA.OH\)
Mà \(OB=OD\left(=R_{\left(O\right)}\right)\) nên \(OD^2=OA.OH\). Từ đó suy ra \(\dfrac{OD}{OA}=\dfrac{OH}{OD}\). Từ đó dễ dàng suy ra 2 tam giác OHD và ODA đồng dạng.
b) Tam giác OAB vuông tại B có đường cao BH nên \(AB^2=AH.AO\)
Mặt khác, ta có \(\widehat{ABD}=\widehat{AEB}\) vì chúng lần lượt là góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung BD.
\(\Rightarrow\Delta ABD~\Delta AEB\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AE}=\dfrac{AD}{AB}\Rightarrow AB^2=AD.AE\)
Từ đó suy ra \(AH.AO=AD.AE\) hay \(\dfrac{AH}{AD}=\dfrac{AE}{AO}\). Do đó \(\Delta AHE~\Delta ADO\left(c.g.c\right)\) \(\Rightarrow\widehat{AEH}=\widehat{AOD}\) hay tứ giác OHDE nội tiếp.
\(\Rightarrow\widehat{AHD}=\widehat{DEO}=\widehat{ODE}=\widehat{OHE}\)
\(\Rightarrow90^o-\widehat{AHD}=90^o-\widehat{OHE}\) \(\Rightarrow\widehat{DHI}=\widehat{EHI}\).
Ta suy ra được đpcm.
a:
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC
c: Xét (O) có
ΔBCN nội tiếp
BN là đường kính
Do đó: ΔBCN vuông tại C
=>BC\(\perp\)CN
Ta có: BC\(\perp\)CN
BC\(\perp\)OA
Do đó: OA//CN
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABO vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được:
\(AH\cdot AO=AB^2\)(1)
Xét (O) có
\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD
\(\widehat{BED}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)
Do đó: \(\widehat{ABD}=\widehat{BED}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)
hay \(\widehat{ABD}=\widehat{AEB}\)
Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD∼ΔAEB(g-g)
Suy ra: \(\dfrac{AB}{AE}=\dfrac{AD}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=AE\cdot AD\)(2)
Từ (1) và (2) suy ra \(AH\cdot AO=AD\cdot AE\)(đpcm)
a) Xét tứ giác OMAN có
\(\widehat{OMA}\) và \(\widehat{ONA}\) là hai góc đối
\(\widehat{OMA}+\widehat{ONA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OMAN là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay O,M,A,N cùng thuộc một đường tròn(đpcm)
\(a,\) Ta có \(OB=OC=R;AB=AC\Rightarrow OA\) là trung trực BC
Do đó \(OA\bot BC=\left\{H\right\}\)
Áp dụng HTL: \(OB^2=OH\cdot OA\Rightarrow OD^2=OH\cdot OA\Rightarrow\dfrac{OD}{OH}=\dfrac{OA}{OD}\)
\(\Rightarrow\Delta OHD\sim\Delta ODA\left(c.g.c\right)\)
\(b,\) Gọi \(\left\{I\right\}=BC\cap AE\)
\(\widehat{OHD}=\widehat{ODA}\Rightarrow\widehat{DHA}=\widehat{ODE}=\widehat{OED}\) (cùng bù với 2 góc bằng nhau, \(\Delta ODE\) cân tại O)
\(\Rightarrow\Delta AEO\sim\Delta AHD\left(g.g\right)\\ \Rightarrow\widehat{AOE}=\widehat{ADH}\)
Mà \(\dfrac{OH}{DH}=\dfrac{OD}{AD}\left(\Delta OHD\sim\Delta ODA\right)\Rightarrow\dfrac{OH}{DH}=\dfrac{OE}{AD}\)
\(\Rightarrow\Delta HEO\sim\Delta HDA\left(g.g\right)\\ \Rightarrow\widehat{OHE}=\widehat{DHA}\)
Mà \(OA\bot BC\Rightarrow\widehat{IHE}=\widehat{IHD}\)
Vậy BC trùng với p/g \(\widehat{DHE}\)
\(c,\) Vì HI là p/g trong của \(\Delta DHE\) và \(HA\bot HI\)
\(\Rightarrow HA\) là p/g ngoài
\(\Rightarrow\dfrac{IE}{ID}=\dfrac{AE}{AD}=\dfrac{HE}{HD}\left(1\right)\)
Mà \(MN\text{//}BE\Rightarrow\dfrac{MD}{BE}=\dfrac{AD}{AE};\dfrac{ND}{BE}=\dfrac{ID}{IE}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow MD=MN\RightarrowĐpcm\)