Cho tam giác ABC , AB=AC ; D la điểm bất kì trên cạnh AB . Tia phân giác cua góc A cắt canhk DC ở M , cắt cạnh BC ở I
a) C/m CM= BM
b) C/m AI là đường trung trực của đoạn thẳng BC
c) Từ D kẻ DH vuông góc BC ( H thuộc BC ) . C/m BAC = 2 BDH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC và tam giác AED có
\(\hept{\begin{cases}A:gócchung\\\frac{AE}{AB}=\frac{AD}{AC}\left(\frac{8}{20}=\frac{6}{15}\right)\end{cases}}\)
Vậy tam giác ABC đồng dạng với tam giác AED (c-g-c)
easy :>
A B C D E
Ta có : \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5} ;\frac{ AD}{AC}=\frac{8}{20}=\frac{2}{5}\)
\(\Rightarrow\frac{AE}{AB}=\frac{AB}{AC}\)
Xét 2 tam giác : ADE và ACB có :
\(\widehat{A}\)chung
\(\frac{AE}{AB}=\frac{AB}{AC}\)
\(\Rightarrow\Delta ADE~\Delta ACB\left(TH2\right)\)
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
Hình bạn tự vẽ nha!
\(\Delta\)ABC có: AB= AC =>\(\Delta\)ABC cân tại A =>\(\widehat{ABC}\)=\(\widehat{ACB}\)
a, Xét \(\Delta\)AMB và \(\Delta\)AMC có:
AB= AC; \(\widehat{BAM}\)=\(\widehat{CAM}\); AM chung
=> \(\Delta\)AMB= \(\Delta\)AMC (c.g.c)
=> BM= CM (2 cạnh tương ứng)
b, Xét \(\Delta\)AIB và \(\Delta\)AIC có:
\(\widehat{IBA}\)=\(\widehat{ICA}\); AB= AC; \(\widehat{BAI}\)=\(\widehat{CAI}\)
=> \(\Delta\)AIB= \(\Delta\)AIC (g.c.g)
=> \(\widehat{AIB}\)=\(\widehat{AIC}\)mà \(\widehat{AIB}\)+\(\widehat{AIC}\)= 900 => AI \(\perp\)BC (1)
=> BI= IC => I là trung điểm của BC (2)
Từ (1) và (2) => AI là đường trung trực của đoạn thẳng BC.