K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

ta có tam giác DHC đồng dạng với tam giác ADC 
==> DC.AD = AC.DH 
==> sqr(DC.AD) = SQR(AC.DH) 
mà AD^2 = AC^2 - DC^2 
==> 169( AC^2 - 169) = 25.AC^2 
=> AC= 169/12

6 tháng 8 2016

 Do ABCD là hình chữ nhật => CD = AB = 13 cm và BD = AC 
Áp dụng định lí Pi-ta-go vào tam giác vuông DHC có: 
HC^2 = CD^2 - DH^2 = 13^2 - 5^2 = 12^2 => HC = 12 cm 
Áp dụng hệ thức lượng vào tam giác vuông ACD có: 
CD^2 = HC.AC => AC = CD^2/HC = 13^2/12 = 169/12 cm 
Vậy BD = AC = 169/12 cm.

27 tháng 6 2018

A B C D H 13 5 13

Theo đinh lý Pytago trong tam giác HCD có:

\(HC^2+HD^2=CD^2\)

\(\Rightarrow HC=\sqrt{13^2-5^2}=12\)

Lại có: \(CD^2=HC.AC\)

\(\Rightarrow13^2=12.AC\)

\(\Rightarrow AC=\frac{169}{12}\approx14,1\)

\(\Rightarrow BD\approx14,1\)(cm)

28 tháng 10 2021

Giải như ngu

 

NM
31 tháng 5 2021

A B H C D E

ta có\(AH=\frac{1}{4}AB=3cm\)

 \(\frac{BH}{BA}=\frac{HD}{AC}=\frac{AE}{AC}=\frac{3}{4}\Rightarrow AE=\frac{3}{4}AC=12cm\)

Vậy điện tích AEDH là \(3\times12=36cm^2\)

15 tháng 7 2018

Xét tam giác DHC vuông tại H

\(\Rightarrow HC=\sqrt{DC^2-DH^2}=12\left(cm\right)\)

Xét tam giác ADC vuông tại D đường cao DH

\(\Rightarrow AH=\dfrac{DH^2}{HC}=\dfrac{25}{12}\)

\(\Rightarrow AC=AH+HC=\dfrac{169}{12}\)(cm)

\(\Rightarrow BD=\dfrac{169}{12}\)(cm)

31 tháng 5 2021
Nam 5a4 đen lắm
29 tháng 10 2023

a: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(AC^2=4^2+3^2=25\)

=>AC=5(cm)

Xét ΔBAC vuông tại B có BH là đường cao

nên \(BH\cdot AC=BA\cdot BC\)

=>BH*5=3*4=12

=>BH=2,4(cm)

Xét ΔBAC vuông tại B có

\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)

=>\(\widehat{BAC}\simeq37^0\)

b: Xét ΔABE vuông tại A có AH là đường cao

nên \(BH\cdot BE=BA^2\)(1)

Xét ΔABC vuông tại B có BH là đường cao

nên \(AH\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)

c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có

\(\widehat{HBC}\) chung

Do đó: ΔBHC\(\sim\)ΔBFE

=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)

=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)

Xét ΔBHF và ΔBCE có

BH/BC=BF/BE

\(\widehat{HBF}\) chung

Do đó: ΔBHF\(\sim\)ΔBCE