K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2019

a, xét tam giác ABD và tam giác ACE có góc A chung

AB = AC (gt)

góc ADB = góc AEC = 90 

=> tam giác ABD = tam giác ACE (ch-gn)

b, tam giác abd = tam giác ACE (câu a)

=> góc ABD = góc ACE (Đn)

AB = AC (gt) => tam giác ABC cân tại  A (Đn) => góc ABC = góc ACB

có ABD + góc DBC = góc ABC 

góc ACE + góc ECB = góc ACB 

=> góc DBC = góc ECB

=> Tam giác IBC cân tại I 

=> IB = IC

xét tam giác EIB và tam giác DIC có : góc EIB = góc DIC (đối đỉnh)

góc BEC = góc CDB = 90

=> tam giác EIB = tam giác DIC (ch-gn)

=> EI = ID (đn)

16 tháng 12 2021

đn là gì đấy bạn

 

Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

⇒AD=AE(hai cạnh tương ứng)

Ta có: AE+EB=AB(E nằm giữa A và B)

AD+DC=AC(D nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và AD=AE(cmt)

nên EB=DC

Ta có: ΔABD=ΔACE(cmt)

nên \(\widehat{ABD}=\widehat{ACE}\)(hai góc tương ứng)

hay \(\widehat{EBK}=\widehat{DCK}\)

Xét ΔEBK vuông tại E và ΔDCK vuông tại D có

EB=DC(cmt)

\(\widehat{EBK}=\widehat{DCK}\)(cmt)

Do đó: ΔEBK=ΔDCK(cạnh góc vuông-góc nhọn kề)

⇒BK=CK(hai cạnh tương ứng)

Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)

\(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)

mà \(\widehat{ABM}=\widehat{ACM}\left(=90^0\right)\)

và \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy trong ΔABC cân tại A)

nên \(\widehat{MBC}=\widehat{MCB}\)

Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)

nên ΔMBC cân tại M(Định lí đảo của tam giác cân)

⇒MB=MC

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: KB=KC(cmt)

nên K nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Ta có: MB=MC(cmt)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Từ (1), (2) và (3) suy ra A,K,M thẳng hàng(đpcm)

3 tháng 12 2015


c)Xét tam giác OED và ODC có:
góc OED=ODC(=90)(1)
góc EOB=DOC(đối đỉnh)(3). do đó góc EBO = DCO( theo định kí tổng 3 góc của tam giác)(2)
Từ 1,2,3 => tam giác OEB=ODC(định lí 2 tam giác bằng nhau)=> OB=OC(*)
Xét tam giác OAB và OAC có
AB=AC
OA chung
OB=OC(theo *)
Do đó tam giác OAB=OAC=> góc OAB = OAC=> OA là phân giác của góc BAC