cho tam giác ABC có AB=AC.Kẻ BD vuông góc với AC tại D;CE vuông góc với AB tại E.
C/m R: a) tam giác ABC= tam giác ACE
b) Tam giác BEI= tam giác CDI
Các bạn giúp mình với nhé !!!!!! :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác ABD và tam giác ACE có góc A chung
AB = AC (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-gn)
b, tam giác abd = tam giác ACE (câu a)
=> góc ABD = góc ACE (Đn)
AB = AC (gt) => tam giác ABC cân tại A (Đn) => góc ABC = góc ACB
có ABD + góc DBC = góc ABC
góc ACE + góc ECB = góc ACB
=> góc DBC = góc ECB
=> Tam giác IBC cân tại I
=> IB = IC
xét tam giác EIB và tam giác DIC có : góc EIB = góc DIC (đối đỉnh)
góc BEC = góc CDB = 90
=> tam giác EIB = tam giác DIC (ch-gn)
=> EI = ID (đn)
Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
⇒AD=AE(hai cạnh tương ứng)
Ta có: AE+EB=AB(E nằm giữa A và B)
AD+DC=AC(D nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và AD=AE(cmt)
nên EB=DC
Ta có: ΔABD=ΔACE(cmt)
nên \(\widehat{ABD}=\widehat{ACE}\)(hai góc tương ứng)
hay \(\widehat{EBK}=\widehat{DCK}\)
Xét ΔEBK vuông tại E và ΔDCK vuông tại D có
EB=DC(cmt)
\(\widehat{EBK}=\widehat{DCK}\)(cmt)
Do đó: ΔEBK=ΔDCK(cạnh góc vuông-góc nhọn kề)
⇒BK=CK(hai cạnh tương ứng)
Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)
\(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)
mà \(\widehat{ABM}=\widehat{ACM}\left(=90^0\right)\)
và \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy trong ΔABC cân tại A)
nên \(\widehat{MBC}=\widehat{MCB}\)
Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)
nên ΔMBC cân tại M(Định lí đảo của tam giác cân)
⇒MB=MC
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: KB=KC(cmt)
nên K nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Ta có: MB=MC(cmt)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)
Từ (1), (2) và (3) suy ra A,K,M thẳng hàng(đpcm)
c)Xét tam giác OED và ODC có:
góc OED=ODC(=90)(1)
góc EOB=DOC(đối đỉnh)(3). do đó góc EBO = DCO( theo định kí tổng 3 góc của tam giác)(2)
Từ 1,2,3 => tam giác OEB=ODC(định lí 2 tam giác bằng nhau)=> OB=OC(*)
Xét tam giác OAB và OAC có
AB=AC
OA chung
OB=OC(theo *)
Do đó tam giác OAB=OAC=> góc OAB = OAC=> OA là phân giác của góc BAC