Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét 2 tam giác vuông ΔABD và ΔACE có:
AB = AC (gt);
góc A chung
⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn) (đpcm)
b, ΔABD = ΔACE ⇒ AD = AE
⇒ AC - AD = AB - AE ⇒ BE = CD
Xét 2 tam giác vuông ΔBIE và ΔCID có:
BE = CD
\(\widehat{BEI}=\widehat{CDI}\) ( đối đỉnh )
⇒ ΔBEI = ΔCDI (cạnh góc vuông - góc nhọn)
a, C/m : BD=BE
Xét : tgEBI và tgBID
Có : B góc chung
BI cạnh chụng
E=D=900 (vuông góc)
=>tgEBI=tgBID (gcg)
=>BD=BE
b,C/M :tgAET=tgCDI
Xét : tgAEI và tgCID
có : C1=C2 (đđ)
D=E=90(vuông góc)
Mà :D=E và C1=C2
=> A1=C1
=>tgAEI=tgCID
c, C/M:ED//AC
Xét : tgEID và tgCIA
Có : góc EID=góc AIC
xog tu tim ý để chug bag nhau nhé
nho **** đó
a, xét tam giác ABD và tam giác ACE có góc A chung
AB = AC (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-gn)
b, tam giác abd = tam giác ACE (câu a)
=> góc ABD = góc ACE (Đn)
AB = AC (gt) => tam giác ABC cân tại A (Đn) => góc ABC = góc ACB
có ABD + góc DBC = góc ABC
góc ACE + góc ECB = góc ACB
=> góc DBC = góc ECB
=> Tam giác IBC cân tại I
=> IB = IC
xét tam giác EIB và tam giác DIC có : góc EIB = góc DIC (đối đỉnh)
góc BEC = góc CDB = 90
=> tam giác EIB = tam giác DIC (ch-gn)
=> EI = ID (đn)
tu ve hinh :
AH cat BC tai O
xet tamgiac HAB va tamgiac HAC co :
BH = CH do tamgiac HBC can tai H (gt)
BA = CA do tamgiac ABD = tamgiac ACE (gt)
AH chung
nen tamgiac HAB = tamgiac HAC (c - c - c)
=> goc BAH = goc CAH (dn) (1)
goc DAB = goc EAC (dd) (2)
goc DAB + goc DAH = goc BAH (3)
goc CAE + goc EAH = goc EAC (4)
(1)(2)(3)(4) => goc DAH = goc HAE (5)
xet tamgiac DHA va tamgiac EHA co : goc HDA = goc HEA do CD | BH va BE | CH (gt) (6)
AH chung (7)
(5)(6)(7) => tamgiac DHA = tamgiac EHA (ch - gn)
=> goc OHB = goc OHC (dn) (8)
tamgiac HBC can tai H => BH = HC va goc HBO = goc HCO (9)
(8)(9) => tamgiac HBO = tamgiac HCO (g - c - g)
=> goc HOB = goc HOC (dn) va OB = OC (dn)
goc HOB + goc HOC = 180 do (kb)
=> HOC = 90 do => AH | BC (dn)
=> AH la trung truc cua BC
Câu a ) - Chứng minh tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền - góc nhọn ) => Tự chứng minh
Câu b ) - Vì tam giác vuông ABD = tam giác vuông ACE ( ở câu a )
=> Góc B1 = góc C1 ( 2 góc tương ứng )
- Vì tam giác ABC là tam giác cân => góc B = góc C
Ta có góc B1 + góc B2 = góc C1 + C2
=> Góc B2 = góc C2
- Vậy tam giác HBC là tam giác cân
Câu c )