K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

\(a,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}AH\cdot BC\\ \Rightarrow AB\cdot AC=AH\cdot BC\\ b,AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\left(pytago\right)\\ \Rightarrow S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot5\cdot12=30\left(cm\right)\\ AH\cdot BC=AB\cdot AC\Rightarrow AH=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\\ BH=\sqrt{AB^2-AH^2}=\dfrac{25}{13}\left(cm\right)\left(pytago\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

BH=3^2/5=1,8cm

c: BE là phân giác

=>AE/AB=HE/BH

=>AE/5=HE/3=(AE+HE)/(5+3)=0,3

=>AE=1,5cm và HE=0,9cm

12 tháng 6 2021

jup mk với mik cần gấp

 

12 tháng 6 2021

Câu c) sai đề phải k ạ?? EA/EA 

 

a: BC=13cm

b: Xét ΔCAD vuông tại A và ΔCHD vuông tại H có

CD chung

\(\widehat{ACD}=\widehat{HCD}\)

Do đó: ΔCAD=ΔCHD

Suy ra: CA=CH

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

b: Ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

\(BH=\dfrac{BA^2}{BC}=\dfrac{3^2}{5}=1.8\left(cm\right)\)

Lớp 5 trả lời dc bài lớp 8 :)?

20 tháng 12 2021

a: \(S_{ABC}=5\left(cm^2\right)\)

9 tháng 6 2021

Xét tứ giác ABKC có:

\(B\chi\perp AB\) (gt)

\(AC\perp AB\) (gt)

\(\Rightarrow B\chi\text{//}AC\) 

\(\Rightarrow\text{Tứ giác ABKC}\) là hình thang

mà \(\widehat{A}=\widehat{B}=\)\(90^0\)

Vậy hình thang ABKC là hình thang vuông

b) Xét ΔABK và ΔCHA có:

\(\widehat{ABK}=\widehat{CHA}=\)\(90^0\)

\(\widehat{BAK}=\widehat{HCA} \) ( cùng phụ với \(\widehat{HAC}\) )

\(\Rightarrow\text{ΔABK}\) \(\sim\)ΔCHA (gg)

\(\Rightarrow\dfrac{AB}{CH}=\dfrac{AK}{CA}\)

\(\Rightarrow AB.CA=AK.CH\)

c)  Xét ΔAHB và ΔCHA có:

\(\widehat{AHB}=\widehat{CHA}=\)\(90^0\)

\(\widehat{BAH}=\widehat{HCA}\)​ ( cùng phụ với \(\widehat{HAC}\) )​

\(\Rightarrow\Delta AHB\sim\Delta CHA\left(gg\right)\)

\(\Rightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)

\(\Rightarrow AH.AH=BH.CH\)

\(\Rightarrow AH^2=BH.CH\)

\(\Rightarrow AH^2=9.16\)

\(\Rightarrow AH=12\left(cm\right)\)

Xét \(\Delta AHB\) vuông tại H có:

\(AB^2=BH^2+HA^2\) ( Định lí Pitago)

\(\Rightarrow AB^2=9^2+12^2\)

\(\Rightarrow AB=\sqrt{225=15\left(cm\right)}\)