PHẦN B. HÌNH HỌC Bài 1. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG 1. BÀI TẬP CƠ BẢN AB=5cm;BC=1dm
tính lần lượt độ dài các đoạn bc,ch,ah,ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6 cm2 ? Ko chắc.cách làm tra mạng nha,mk lười chép lắm!
\(a,\sin\widehat{C}=\dfrac{AB}{BC};\cos\widehat{C}=\dfrac{AC}{BC};\tan\widehat{C}=\dfrac{AB}{AC};\cot\widehat{C}=\dfrac{AC}{AB}\\ b,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\left(pytago\right)\\ \Rightarrow\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13};\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{5}{13}\\ \tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5};\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{5}{12}\)
\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5}\approx\tan67^022'\\ \Rightarrow\widehat{B}\approx67^022'\\ \Rightarrow\widehat{C}=90^0-67^022'=22^038'\)
a, Tam giác ABC ngọi tiếp đường tròn \(\left(O\right)\)nên AB, BC, AC lần lượt là tiếp tuyến tại D, E , F của đường tròn.
Theo tính chất của hai đường tiếp tuyến cắt nhau, ta có:
AD = AF ; DB = BE ; FC = CE
Xét vế phải:
VP = AB + AC - BC
= ( AD + DB ) + ( AF + CF ) - ( BE + CE )
Thay DB = BE , FC = CE vào biểu thức trên, ta được:
VP = ( AD + BE ) + ( AF + CE ) - ( BE + CE )
= AD + BE + AF + CE - BE - CE
= ( AD + AF ) + ( BE - BE ) + ( CE - CE )
= AD + AF
= AD + AD = 2AD
Vậy 2AD = AB + AC - BC
b, Các hệ thức tương tự là:
2BD = BA + BC - AC
2CF = CA + CB - AB
A B C D
a) SABCD: (20 + 40) x 30 : 2 = 900 (cm^2)
SABC: 40 x 30 : 2 = 600 (cm^2)
SADC: 900 - 600 = 300 (cm^)
b) Tỉ số % của SABC và SADC: 300 : 600 = 0,5 = 50%
Xét tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)
\(\Rightarrow AB=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
Áp dụng hệ thức cạnh góc vuông và đường cao ta có:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Rightarrow AH^2=\dfrac{AC^2AB^2}{AC^2+AB^2}\)
\(\Rightarrow AH=\sqrt{\dfrac{AC^2AB^2}{AC^2+AB^2}}\)
\(\Rightarrow AH=\sqrt{\dfrac{\left(5\sqrt{3}\right)^2\cdot5^2}{\left(5\sqrt{3}\right)^2+5^2}}=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
Áp dụng hệ thưcs cạnh góc vuông và hình chiếu ta có:
\(\left\{{}\begin{matrix}AB^2=BC\cdot BH\\AC^2=BC\cdot CH\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{5^2}{10}=2,5\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{\left(5\sqrt{3}\right)^2}{10}=7,5\left(cm\right)\end{matrix}\right.\)