K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

a) Có: HE _|_ AB (gt); AF _|_ AB (gt) => HE // AF (1)

HF _|_ AC (gt); EA _|_ AC (gt) => HF // EA (2)

Từ (1) và (2) lại có: EAF = 90o (gt)

=> AEHF là hcn

b) Khi AEHF là hình vuông => HE = HF = AE = AF

t/g EHA = t/g FHA (c.c.c) => EHA = FHA (2 góc tương ứng)

Mà EHA + EHB = FHA + FHC = 90o

=> BHE = CHF

t/g BHE = t/g CHF (cạnh góc vuông và góc nhọn kề)

=> EBH = FCH (2 góc tương ứng)

Như vậy để AEHF là hình vuông thì tam giác ABC cân tại A

c) AM là đường trung tuyến của t/g ABC vuông tại A => AM = BC/2 = 10/2 = 5 (cm)

Theo định lí Pi ta go ta có:

AB2 + AC2 = BC2

=> 62 + AC2 = 102

=> AC2 = 102 - 62 = 64

=> AC = 8

Có: AB.AC:2 = BC.AH:2 ( cùng = dt tam giác ABC)

=> AB.AC = BC.AH

=> 6.8 = 10.AH

=> AH = 6.8:10 = 4,8 (cm)

AEHF là hcn => EF = AH = 4,8 (cm)

b: AH^2=HB*HC

=>AH/HB=HC/HA

=>ΔAHC đồng dạng với ΔBHA

=>góc HAC=góc HBA

=>góc HAC+góc HAB=90 độ

=>góc BAC=90 độ

Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

b: AH^2=HB*HC

=>AH/HB=HC/HA

=>ΔAHC đồng dạng với ΔBHA

=>góc HAC=góc HBA

=>góc HAC+góc HAB=90 độ

=>góc BAC=90 độ

Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

24 tháng 11 2023

Bài 1:

\(\dfrac{2x^3+x^2-8x+3}{2x-3}\)

\(=\dfrac{2x^3-3x^2+4x^2-6x-2x+3}{2x-3}\)

\(=\dfrac{x^2\left(2x-3\right)+2x\left(2x-3\right)-\left(2x-3\right)}{2x-3}\)

\(=x^2+2x-1\)

Bài 2:

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó:AEHF là hình chữ nhật

b: D đối xứng A qua F

=>F là trung điểm của AD

=>FA=FD(1)

AEHF là hình chữ nhật

=>HE=AF(2)

Từ (1) và (2) suy ra HE=DF

Xét tứ giác DHEF có

HE//DF

HE=DF

Do đó: DHEF là hình bình hành

c: Để hình chữ nhật AEHF trở thành hình vuông thì AH là phân giác của \(\widehat{FAE}\)

=>AH là phân giác của \(\widehat{BAC}\)

Xét ΔABC có

AH là đường cao

AH là đường phân giác

Do đó: ΔABC cân tại A

=>AB=AC

11 tháng 11 2018

 a,Tứ giác AEHG  la hình chữ nhật.thật vậy:

xét tứ giác AEHG có goc a=90 độ ,góc E=90 độ(HE VUÔNG GÓC VỚI AB) , góc H=90 độ (AH vuông góc với BC)

suy ra tứ giác AEHG la hình chữ nhật

b,xét tam giac BHA có AH^2=AE*AB (1)

xét tam giác AHC có AH^2=AF*AC (2)

Từ (1) và (2) suy ra AE*AB=AF*AC

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật