cho tam giác góc nhọn ABC, kẻ đường cao AH.Từ H kẻ HE vuông góc với AB(E thuộc AB),kẻ HF...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: AH^2=HB*HC

=>AH/HB=HC/HA

=>ΔAHC đồng dạng với ΔBHA

=>góc HAC=góc HBA

=>góc HAC+góc HAB=90 độ

=>góc BAC=90 độ

Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

b: AH^2=HB*HC

=>AH/HB=HC/HA

=>ΔAHC đồng dạng với ΔBHA

=>góc HAC=góc HBA

=>góc HAC+góc HAB=90 độ

=>góc BAC=90 độ

Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

7 tháng 10 2016

A B C H E F

7 tháng 10 2016

Xét ΔABH vuông tại H(gt)

=> \(AH^2=AE\cdot AB\)   (1)

Xét ΔAHC vuông tại C(gt)

=>\(AH^2=AF\cdot AC\)    (2)

Từ (1)(2) suy ra:

AE.AB=AF.AC

b) Xét ΔABH vuông tại H(gt)

=> \(AB^2=AH^2+BH^2=3^2+4^2=9+16=25\)

=>AB=25

Áp dụng hệ thức ta có:

\(AH^2=AE\cdot AB\)

=> \(AE=\frac{AH^2}{AB}=\frac{4^2}{5}=\frac{16}{5}\)

Có: AB=AE+BE

=>BE=AB-AE= \(5-\frac{16}{5}=\frac{9}{5}\)

 

 

27 tháng 7 2019

XÉt tứ giác AEHF có HEA=90 , HFA=90 , EAF=90

nên tứ giác AEHF là hcn

Xét tam giác ABH vuông tại H HE vuông với AB

nên BA*AE=AH2 

Xét tam giác ACH vuông tại H HF là đường cao 

nên AF*AC=AH2 

Vậy AB*AE=AF*AC

đề câu b sao ý không có điểm o mà lại có oe

16 tháng 7 2021

a) Ta có: \(\angle AEH+\angle AFH=90+90=180\Rightarrow AEHF\) nội tiếp

b) AEHF nội tiếp \(\Rightarrow\angle EFA=\angle EHA=90-\angle BHE=\angle ABC\)

c) Ta có: \(\angle OAC=\dfrac{180-\angle AOC}{2}=90-\dfrac{1}{2}\angle AOC=90-\angle ABC\)

\(\Rightarrow\angle OAC+\angle ABC=90\Rightarrow\angle OAC+\angle AFE=90\Rightarrow OA\bot EF\)

undefined

16 tháng 7 2021

cảm ơn bạn