Cho a,b > 0 phân biệt tùy ý. Đặt \(A=\frac{a+b}{2};B=\sqrt{ab}\). CMR: \(B< \frac{\left(a-b\right)^2}{8\left(A-B\right)}< A\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ồ cuk dễ nhỉ
Nếu các bn thích thì ...........
cứ cho NTN này nhé !
a) Ta có \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)( chia 2 vế cho 2 )
b) \(\frac{a+1}{a}\)chưa lớn hơn hoặc bằng 2 đc , bạn thay a=2 vào thì 3/2<2
c) Ta có \(x^2\ge0\);\(y^2\ge0\);\(z^2\ge0\)
nên \(x^2+y^2+z^2\ge0\)
\(\Rightarrow x^2+y^2+z^2+3\ge3\)
Ta có \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)
a: a*c=-m^2-3<=-3<0 với mọi m
=>Phương trình luôn có hai nghiệm phân biệt
b: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\)
=>\(\dfrac{x_2+x_1}{x_2x_1}=3\)
=>\(\dfrac{-2}{-m^2-3}=3\)
=>\(\dfrac{2}{m^2+3}=3\)
=>m^2+3=2/3
=>m^2=2/3-3=-7/3(vô lý)
ta có: a^2+a+1/4+b^2+b+1/4+c^2+c+1/4=(a+1/2)^2+(b+1/2)^2+(c+1/2)^2>=0
dấu bằng xảy ra khi a=b=c=1/2
\(A-B=\frac{a+b}{2}-\sqrt{ab}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\)
\(\Rightarrow\frac{\left(a-b\right)^2}{8\left(A-B\right)}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)^2}{4\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}>\frac{\left(2\sqrt{\sqrt{ab}}\right)^2}{4}=\sqrt{ab}=B\)
\(\frac{\left(a-b\right)^2}{8\left(A-B\right)}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}< \frac{2\left(a+b\right)}{4}=\frac{a+b}{2}=A\)