Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau 2
a^2 +b^2+c^2 +3>=2(a+b+c)
<=> a^2+b^2 +c^2 +3 -2a -2b -2c >=0
<=>(a-1)^2+(b-1)^2+(c-1)^2>=0 (luon đúng)
vậy a^2 +b^2 +c^2 +3 >=2(a+b+c)
cau 1
a^2 +b^2 +1>= ab +a +b (H)
<=> 2a^2 +2b^2 -2a -2b -2ab +2>=0 (nhân cả 2 vế với 2 đồng thời chuyển vế)
<=> (a^2 -2a +1) +(b^2-2b+1 )+(a^2 -2ab+b^2)>=0
<=> (a-1)^2+(b-1)^2 +(a-b)^2>=0 (luon dung)
=>H luôn đung
a/ \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1\)
Với mọi x ta có :
\(\left(x-3\right)^2\ge0\)
\(\Leftrightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-6x+10>0\)
b/ \(x^2-4x+7=x^2-2.x.2+2^2+3=\left(x-2\right)^2+3\)
Với mọi x ta có :
\(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2+3\ge3\)
\(\Leftrightarrow x^2-4x+7\ge3\left(đpcm\right)\)
c/ \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi x ta có :
\(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow x^2+x+1>0\left(đpcm\right)\)
d/ \(x^2+y^2+4x-6y+15=\left(x^2+4x+2^2\right)+\left(y^2-6y+3^2\right)+2=\left(x+2\right)^2+\left(y-3\right)^2+2\)
Với mọi x,y ta có :
\(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2+2\ge0\)
\(\Leftrightarrow x^2+y^2+4x-6y+15>0\left(đpcm\right)\)
2/ Ta có :
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)
3/ \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)
Mà \(x+y=7;xy=-3\)
\(\Leftrightarrow x^2+y^2=7^2-2.\left(-3\right)=49+6=55\)
2.
Ta có hằng đẳng thức : \(\left(a-b\right)^2=a^2-2ab+b^2\left(1\right)\)
Lại có \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2-4ab=a^2+2ab-4ab+b^2\)
\(\Leftrightarrow\left(a+b\right)^2-4ab=a^2-2ab+b^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)( đpcm )
3.
Ta có hằng đẳng thức \(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=7\)và \(xy=-3\)vào ta được :
\(x^2+y^2=7^2-2\left(-3\right)\)
\(\Leftrightarrow x^2+y^2=49+6=55\)
Vậy ...
1.
a) Đặt \(A=x^2-6x+10\)
\(A=\left(x^2-6x+9\right)+1\)
\(A=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1>0\)
Vậy ...
b) Đặt \(B=x^2-4x+7\)
\(B=\left(x^2-4x+4\right)+3\)
\(B=\left(x-2\right)^2+3\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B\ge3\)
Vậy ...
Bài 1:
\(2x^2+8x+30\)
\(=2\left(x^2+4x+15\right)\)
\(=2\left(x^2+4x+4+11\right)\)
\(=2\left(x+2\right)^2+22>0\forall x\)
Bài 2:
\(-x^2-2x-12\)
\(=-\left(x^2+2x+12\right)\)
\(=-\left(x^2+2x+1+11\right)\)
\(=-\left(x+1\right)^2-11< 0\forall x\)
a)
Ta có:
\(a^2+b^2=a^2+2ab+b^2-2ab=\left(a+b\right)^2-2ab\)
\(=7^2-2.5=49-25=24\)
Ta có:
\(a^3+b^3=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=7^3-3.5.7=238\)
b)
Ta có: \(a^2-4a+5=a^2-4a+4+1\)
\(=\left(a+2\right)^2+1>0\) với mọi a
c)
A = \(x^2+8x-1\)
A = \(x^2+2.x.4+16-17\)
A = \(\left(x+4\right)^2-17\ge-17\) với mọi x
Dấu " = " xảy ra khi và chỉ khi x = -4
Vậy MinA = -17 khi x = -4
a) b2 + 6b + 10
= b2 + 2.( b ).3 + 33 + 1
= ( b + 3 ) 2 + 1
Vì ( b + 3 ) 2 > hoặc = 0
Nên ( b + 3 ) 2 + 1 > 0
b) B= -a2+ 6a - 15
B= - ( a2 + 2.a.3 + 32 + 8 )
B= - [( a + 3 ) 2 + 8 ]
Vì ( a + 3 )2 > hoặc = 0
Nên ( a + 3 ) 2 + 8 > 0
=> - [( a + 3 ) 2 + 8 ] < 0
Vậy B < 0
a) \(b^2+6b+10\)
=\(b^2+2b.3+3^2-3^2+10\)
=\(\left(b+3\right)^2+1\)
Ta có: \(\left(b+3\right)^2\)\(\ge\)0
Nên: \(\left(b+3\right)^2\)> 0 (với mọi b)
b) \(-a^2+6a-15\)
= \(-\left(a^2-6a+15\right)\)
=\(-\left(a^2-2a.3+3^2-3^2+15\right)\)
=\(-\left[\left(a-3\right)^2+6\right]\)
Ta có: \(\left(a-3\right)^2\ge0\)
Nên: \(\left(a-3\right)^2+6>0\)
Do đó: \(-\left[\left(a-3\right)^2+6\right]< 0\)(với mọi a)
c) Ta có VT=\(\left(a-b\right)^2+\left(ab+1\right)^2\)
\(=a^2-2ab+b^2+a^2b^2+2ab+1\)
\(=a^2+b^2+a^2b^2+1\)
Lại có VP= \(\left(a^2+1\right)\left(b^2+1\right)\)
\(=a^2b^2+a^2+b^2+1=a^2+b^2+a^2b^2+1\)(=VT)
Vậy VT=VP
4a a + b a + 1 a + b + 1 + b ≥ 0.
4 a + ab + a a + ab + a + b + b ≥ 0
4 a + ab + a + 4b a + ab + a + b ≥ 0
2a + 2ab + 2a + b ≥ 0