K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 6 2019

ĐKXĐ: ....

\(A=\left(\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{2\left(\sqrt{x}+2\right)-2\sqrt{x}-3}{\sqrt{x}+2}\right)\)

\(=\left(\frac{3x-6\sqrt{x}-x-2\sqrt{x}+8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{2\sqrt{x}+4-2\sqrt{x}-3}{\sqrt{x}+2}\right)\)

\(=\frac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\left(\sqrt{x}+2\right)}{1}=\frac{2x}{\sqrt{x}-2}\)

b/ \(A=\frac{2x}{\sqrt{x}-2}=2\sqrt{x}+4+\frac{8}{\sqrt{x}-2}=2\left(\sqrt{x}-2\right)+\frac{8}{\sqrt{x}-2}+8\ge2\sqrt{\frac{16\left(\sqrt{x}-2\right)}{\sqrt{x}-2}}+8=16\)

\(\Rightarrow A_{min}=16\) khi \(\left(\sqrt{x}-2\right)^2=4\Rightarrow x=16\)

6 tháng 4 2019

Cái này là toán lớp 9 chứ.

a)
ĐKXĐ : \(x\ne\pm4\)

\(A=\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{\sqrt{x}+2}{x-4}\right):\left(\frac{\left(\sqrt{x}+2\right)^2}{x-4}-\frac{\left(\sqrt{x}-2\right)^2}{x-4}-\frac{2\sqrt{x}}{x-4}\right)\)

\(=\left(\frac{x-\sqrt{x}+7+\sqrt{x}+2}{x-4}\right):\left(\frac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-2\sqrt{x}}{x-4}\right)\)

\(=\frac{x+9}{x-4}\cdot\frac{x-4}{6\sqrt{x}}=\frac{x+9}{6\sqrt{x}}\)

b)

Ta có

\(x+9-6\sqrt{x}=\left(\sqrt{x}-3\right)^2\ge0\)
\(\Rightarrow x+9\ge6\sqrt{x}\)

\(\Rightarrow\frac{x+9}{6\sqrt{x}}\ge1\)

\(\Leftrightarrow A\ge1\)

\(\Leftrightarrow\frac{1}{A}\le1\)

\(\Rightarrow A\ge\frac{1}{A}\)