Cho tam giác ABC cân tại A.Vẽ AH vuông góc BC
a)CM:góc BAH = góc HAC
b)Biết AB=20cm;AH=6cm.Tính BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABH và tam giác ACH có:
\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)
\(AB=AC\) (Do tam giác ABC cân tại A)
\(AH\) chung
\(\Rightarrow\Delta ABH=\Delta ACH\) (ch-cgv) \(\Rightarrow BH=CH\) (2 cạnh tương ứng)
b) Do \(\Delta ABH=\Delta ACH\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
c) Do \(BH=CH\Rightarrow BH=CH=\dfrac{1}{2}BC=4\left(cm\right)\)
Áp dụng ĐL Pytago ta có: \(AB^2=AH^2+BH^2\)
\(5^2=AH^2+4^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3\left(cm\right)\)
a: Xét ΔAHB và ΔAHC co
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>góc BAH=góc CAH
a, tgABC cân tại A suy ra gócABC=gócACB, AB=AC
AH⊥BC ⇒ gócAHB=gócAHC
Xét △ABH và △ACH có:
gócABC=gócACB,AB=AC,gócAHB=gócAHC (C/m trên)
⇒ △ABH=△ACH (ch-gn)
b, Ta có △ABH=△ACH ➩ gócDAH=gócEAH (2 góc tương ứng)
Xét △DAH và △EAH có
gócDAH=gócEAH (c/m trên), ADH=gócAEH=90độ (DH⊥AB, HE⊥AC)
AH là cạnh chung
⇒ △DAH=△EAH (ch-gn) ⇒ AD=AE (2 cạnh tương ứng)
⇒ △ADE cân tại A
c, △ABC cân tại A ⇒ gócB=\(\dfrac{180độ-gócA}{2}\)
△ADE cân tại A ⇒ gócC=\(\dfrac{180độ-gócA}{2}\)
⇒gócB=gócC , mà 2 góc này nằm ở vị trí đồng vị
⇒ DE//BC
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
Bạn tự vẽ hình nhé.
a/ Xét tam giác AHB và tam giác AHC có:
AB = AC (vì tam giác ABC cân tại A)
góc ABC = góc ACB (vì tam giác ABC cân tại A)
AH: cạnh chung
=> tam giác AHB = tam giác AHC (c.g.c)
Note: Câu a còn có 2 cách khác nữa, cần inbox mình :)
b/ Ta có tam giác ABC cân tại A => AH vừa là đường cao vừa là trung tuyến
=> HB = HC = BC / 2 = 10 / 2 = 5 (cm)
Xét tam giác ABH vuông tại H có:
AH^2 + BH^2 = AB^2 (pytago)
AH^2 + 5^2 = 13^2 (Vì: 169 - 25 = 144)
=> AH^2 = 144
=> AH = \(\sqrt{144}\)= 12 (cm)
c/ Ta có:
AH vuông góc BC (gt)
CE vuông góc BC (gt)
=> CE // AH
a) Xét tam giác vuông AHB và tam giác vuông AHC có
AB=AC( vì tam giác ABC cân tại A)
Cạnh AH chung
=> \(\Delta AHB=\Delta AHC\) ( 2 cạnh góc vuông)
b) Có \(\Delta AHB=\Delta AHC\)
=>BH=HC
=>H là trung điểm của BC
=>BH=BC/2=10/2=5(cm)
Xét tam giác AHB vuông tại H có
\(AB^2=AH^2+BH^2\)
=>132=AH2+52
=>AH2=132-52=144
=>AH=12
Vậy AH=12 cm)
Có \(AH⊥BC,CE⊥BC\)
=>CE//AH( quan hệ giữa tính vuông góc và song song)
a. vì ABC cân tại A, AH | BC
=> AH là đường cao của ABC
=> AH cũng là đường trung trực của ABC
xét \(\Delta\)ABH và \(\Delta\)ACH có:
AB=AC(gt)
B=C(gt)
HB=HC(trung trực)
=> \(\Delta\text{ABH}=\Delta\text{ACH}\)(C.G.C)
=> BAH=HAC(2 góc tương ứng)
b. trong tam giác ABH có:
AB2=AH2+BH2(PI TA GO)
=> 202=62+BH2
=> 400=36+BH2
=> BH2=400-36
=> BH2=364
=> BH=\(\sqrt{364}\)
MÀ AH là trung trực => BH=CH
=> BC=BH+CH=\(\sqrt{364}+\sqrt{364}\) (SỐ HƠI LẺ)
a) Xét tam giác BAH vuông tại H và Tam giác ACH vuông tại H có :
AB = AC ( tam giác ABC cân tại A )
AH chung
=> TAm giác BAH = tam giác ACH ( c.h - c.g.v )
=> BAH = ACH ( hai góc tương ứng )
b)
Tam giác BAH vuông tại H , theo py ta go :
BH^2 + AH^2 = AB^2
=> BH^2 = AB^2 - AH^2
= 20^2 - 6^2
= 400 - 36
= 364
=> BH = căn 364
TAm giác HAB = tam giác HAC ( CMT)
=> HB = HC
=> HB + HC = 2 HB = 2. căn 364 = BC
=> BC = 2 căn 364