cho tam giác ABC vuông góc tại A;AB =8cm,AC =6cm gọi M là trung điểm AC và E là trung điểm BC.
a,tính EM
b,tứ giác AMEB là hình gì?vì sao?
c,tính chu vi hình thang AMEB?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
+)ΔABC vuông tại A \(\Rightarrow\widehat{A}=90^o\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(=>90^o+40^o+\widehat{C}=180^o\)
\(=>\widehat{C}=180^o-90^o-40^o=50^o\)
Vậy \(\widehat{C}=50^o\)
------------------------------------------
+)Tam giác ABC vuông tại B \(\Rightarrow\widehat{B}=90^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}+\widehat{C}=2.\widehat{C}+\widehat{C}=3.\widehat{C}\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+90^o+\widehat{C}=180^o\)
\(=>\widehat{A}+\widehat{C}=180^o-90^o\)
\(=>3.\widehat{C}=90^o\)
\(=>\widehat{C}=\dfrac{90^o}{3}=30^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}=2.30^o=60^o\)
Vậy: \(\widehat{A}=60^o\) ; \(\widehat{C}=30^o\)
1: góc C=90-40=50 độ
2: góc A=2/3*90=60 độ
góc C=90-60=30 độ
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
b: Xét ΔEBC có góc EBC=góc ECB
nên ΔEBC cân tại E
mà EH là đường cao
nên H là trung điểm của BC
=>HB=HC
d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEI=góc HEC
=>ΔEAI=ΔEHC
=>EI=EC>EH
a , BD là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\) \(\widehat{ABC}=\frac{1}{2}.\widehat{ABC}=\frac{1}{2}.40^o=20^o\)
b , BD là phân giác của \(\widehat{ABC}\) \(\Rightarrow\) \(\widehat{ABD}=\widehat{EBD}\)
Xét ΔABD và ΔEBD có :
BD chung ; \(\widehat{ABD}\) \(=\) \(\widehat{EBD}\); AB = EB ( gt )
\(\Rightarrow\) ΔABD = ΔEBD ( c.g.c )
\(\Rightarrow\) \(\widehat{BAD}\) \(=\) \(BED\) ( đpcm )
\(\Rightarrow\) \(\widehat{BED}=90^o\) \(\Rightarrow\) \(DE\) ⊥ \(BC\) ( đpcm )
c , Xét 2 tam giác vuông : ΔABC và ΔEBF có :
\(\widehat{B}\) chung ; AB = BE ( gt )
\(\Rightarrow\) ΔABC = ΔEBF ( cgv - gn ) ( đpcm )
d , Xét ΔBCF có FE , CA là đường cao , FE ∩ CA tại D
\(\Rightarrow\) D là trực tâm ⇒ BD ⊥ CF
Mà BD ⊥ CK ( gt )
\(\Rightarrow\) C, K, F thẳng hàng ( đpcm )
Ta có: <A+<B+<C=180
90+30+<C=180
<c=180-30-90=60
Xét ▲ABC và ▲MNP ta có:
<A=<M=90
<C=<P(=60)
Do đó ▲ABC đồng dạng ▲MNP(g-g)
a) Xét \(\Delta ABC\) có M là trung điểm của AC
E là trung điểm của BC
=> EM là đường trung bình của \(\Delta ABC\)
=> EM//AB ; \(EM=\dfrac{1}{2}AB=\dfrac{1}{2}.8=4\left(cm\right)\)
Vậy EM = 4cm
b) Xét tứ giác AMEB có EM//AB
=> tứ giác AMEB là hình thang
Vậy tứ giác AMEB là hình thang
c) Xét \(\Delta ABC\) vuông tại A có \(AB^2+AC^2=BC^2\)
=> \(BC^2=8^2+6^2\)
=> \(BC=\sqrt{100}=10\left(cm\right)\)
=> EB = 5(cm) (Vì E là trung điểm BC)
Có \(P_{AMEB}=AM+EM+EB+AB\)
\(=\dfrac{AC}{2}+4+5+8\)
\(=3+4+5+8\)
\(=20\left(cm\right)\)
Vậy \(P_{AMEB}=20\left(cm\right)\)
Câu trên hỏi tứ giác AMEB là hình gì, câu dưới hỏi hình thang AMEB, đề bài hài hước thật :))
Chúc bạn học tốt