K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2021

a) Xét \(\Delta ABC\) có M là trung điểm của AC

                            E là trung điểm của BC 

=> EM là đường trung bình của \(\Delta ABC\)

=> EM//AB ; \(EM=\dfrac{1}{2}AB=\dfrac{1}{2}.8=4\left(cm\right)\)

Vậy EM = 4cm

b) Xét tứ giác AMEB có EM//AB

=> tứ giác AMEB là hình thang

Vậy tứ giác AMEB là hình thang

c) Xét \(\Delta ABC\)  vuông tại A có \(AB^2+AC^2=BC^2\)

                                             => \(BC^2=8^2+6^2\)

                                             => \(BC=\sqrt{100}=10\left(cm\right)\)

=> EB = 5(cm) (Vì E là trung điểm BC)

Có \(P_{AMEB}=AM+EM+EB+AB\)

                  \(=\dfrac{AC}{2}+4+5+8\)

                   \(=3+4+5+8\)

                  \(=20\left(cm\right)\) 

Vậy \(P_{AMEB}=20\left(cm\right)\)

Câu trên hỏi tứ giác AMEB là hình gì, câu dưới hỏi hình thang AMEB, đề bài hài hước thật :))

Chúc bạn học tốt 

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

11 tháng 1 2023

+)ΔABC vuông tại A \(\Rightarrow\widehat{A}=90^o\)

+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(=>90^o+40^o+\widehat{C}=180^o\)

\(=>\widehat{C}=180^o-90^o-40^o=50^o\)

Vậy \(\widehat{C}=50^o\)

------------------------------------------

+)Tam giác ABC vuông tại B \(\Rightarrow\widehat{B}=90^o\)

+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}+\widehat{C}=2.\widehat{C}+\widehat{C}=3.\widehat{C}\)

+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{A}+90^o+\widehat{C}=180^o\)

\(=>\widehat{A}+\widehat{C}=180^o-90^o\)

\(=>3.\widehat{C}=90^o\)

\(=>\widehat{C}=\dfrac{90^o}{3}=30^o\)

+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}=2.30^o=60^o\)

Vậy: \(\widehat{A}=60^o\) ; \(\widehat{C}=30^o\)

1: góc C=90-40=50 độ

2: góc A=2/3*90=60 độ

góc C=90-60=30 độ

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

b: Xét ΔEBC có góc EBC=góc ECB

nên ΔEBC cân tại E

mà EH là đường cao

nên H là trung điểm của BC

=>HB=HC

d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEI=góc HEC

=>ΔEAI=ΔEHC

=>EI=EC>EH

24 tháng 6 2020

A B C D E F K

a , BD là phân giác của \(\widehat{ABC}\)

\(\Rightarrow\) \(\widehat{ABC}=\frac{1}{2}.\widehat{ABC}=\frac{1}{2}.40^o=20^o\) 

b , BD là phân giác của \(\widehat{ABC}\) \(\Rightarrow\) \(\widehat{ABD}=\widehat{EBD}\) 

Xét ΔABD và ΔEBD có :

BD chung ; \(\widehat{ABD}\) \(=\) \(\widehat{EBD}\); AB = EB ( gt )

\(\Rightarrow\) ΔABD = ΔEBD ( c.g.c )

\(\Rightarrow\) \(\widehat{BAD}\) \(=\) \(BED\) ( đpcm )

\(\Rightarrow\) \(\widehat{BED}=90^o\)  \(\Rightarrow\) \(DE\)\(BC\) ( đpcm )

c , Xét 2 tam giác vuông : ΔABC và ΔEBF có :

\(\widehat{B}\) chung ; AB = BE ( gt )

\(\Rightarrow\) ΔABC = ΔEBF ( cgv - gn ) ( đpcm )

d , Xét ΔBCF có FE , CA là đường cao , FE ∩ CA tại D

\(\Rightarrow\) D là trực tâm ⇒ BD ⊥ CF

Mà BD ⊥ CK ( gt )

\(\Rightarrow\) C, K, F thẳng hàng ( đpcm )

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
1 tháng 10 2023

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

1 tháng 10 2023

 

 

23 tháng 3 2016

Ta có: <A+<B+<C=180

90+30+<C=180

<c=180-30-90=60

Xét ▲ABC và ▲MNP ta có:

<A=<M=90

<C=<P(=60)

Do đó ▲ABC đồng dạng ▲MNP(g-g)