K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

Với \(3^{2n}\): Do 3>0 => \(3^{2n}\)>0

Với \(-3^{2n+1}\): Do -3<0 mà 2n+1 là số lẻ =>\(-3^{2n+1}\)<0

Từ đó, \(-3^{2n+1}\)<0<\(3^{2n}\)hay \(-3^{2n+1}\)<\(3^{2n}\)

11 tháng 2 2017

vì 3n2n là số dương còn (-3)2n-1 là số âm 

tk mk nha 

19 tháng 2 2017

3^2n>3^2n+1

19 tháng 2 2017

Ta có:32n=(32)n=9n

(-3)2n+1=[(-3)2]n+1=9n+1

Mà 9n+1<9n nên 32n<(-3)2n+1

Vậy:32n<(-3)2n+1

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)

\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)

\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)

Ta có đpcm.

8 tháng 9 2017

Nếu: m chẵn , n lẻ thì m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (1)

Nếu: m lẻ , n chẵn thì m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (2)

Nếu: m, n đều lẻ m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (3)

Nếu: m,n đều chẵn 3m-2n+2 chẵn => (m+2n+1)(3m-2n+2) chẵn (4)

Từ (1),(2),(3),(4) suy ra với mọi m,n \(\in\) N thì A = (m+2n+1)(3m-2n+2) là số chẵn

NA
Ngoc Anh Thai
Giáo viên
28 tháng 3 2021

a) Vế trái  \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)

               \(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)

b) Vế trái

 \(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)

              

16 tháng 4 2018

a^2n =x ; x>=0 mọi a; n thuộc n

\(P=2.a.x-3x+5.a.x-7x+3.a.x\)

\(P=10.a.x-10x=10x\left(a-1\right)\)

\(P>0\Rightarrow\left\{{}\begin{matrix}x>0\\a>1\end{matrix}\right.\) ; a>1 => a>0 => kết luân a>1

17 tháng 7 2018

\(125.\left(-61\right).\left(-2\right)^3.\left(-1\right)^{2n}\)

\(=125.\left(-61\right).\left(-8\right).1\)

\(=-1000.\left(-61\right)\)

\(=61000\)

\(\left(-1\right)^{2n}\) :

với \(n\in N\Rightarrow2n\)là số chẵn không âm

mà số nào có số mũ chẵn cũng đều là số dương

\(\Rightarrow\left(-1\right)^{2n}\)là số dương

Tham khảo nhé~

17 tháng 7 2018

Vì n thuộc N mà 2n là một số chẵn 

Nên -1 mũ 2n luôn luôn bằng 1

Ta giải bình thường: \(125.\left(-61\right).\left(-2\right)^3.1=-7625.\left(-8\right)=61000\)

11 tháng 2 2022

\(a,lim\dfrac{^3\sqrt{8n^3+2n}}{-n+3}\)

\(=lim\dfrac{^3\sqrt{8+\dfrac{2}{n^2}}}{-1+\dfrac{3}{n}}=\dfrac{^3\sqrt{8}}{-1}=\dfrac{2}{-1}=-2\)

NV
12 tháng 2 2022

\(\lim\dfrac{\left(2n\sqrt{n}+1\right)\left(\sqrt{n}+3\right)}{\left(n-1\right)\left(3-2n\right)}=\lim\dfrac{\left(2+\dfrac{1}{n\sqrt{n}}\right)\left(1+\dfrac{3}{\sqrt{n}}\right)}{\left(1-\dfrac{1}{n}\right)\left(\dfrac{3}{n}-2\right)}=\dfrac{2.1}{1.\left(-2\right)}=-1\)