bài 1: độ dài 3 cạnh của 1 tam giác tỉ lệ với 2;3;4. Hỏi 3 chiều cao tương ứng với 3 cạnh tỉ lệ với số nào ?
bài 2: cho \(\Delta ABC\) có \(\widehat{B}=60^o\) . Hai đường phân giác AP và CQ cắt nhau tại I. CM:
a) \(\widehat{AIC}=?\)
b) IQ = IP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a , b và c lần lượt là độ dài 3 cạnh của tam giác đó tỉ lệ với 1:3:4 .
a/1=b/3=c/4 và a+b+c=24 (chu vi tam giác)
Áp dụng tính chất dãy tỉ lệ số bằng nhau :
a/1=b/3=c/4=a+b+c/1+3+4=24/8=3
Suy ra :a/1=3=>a=1.3=3
b/3=3=>b=3.3=9
c/4=3=>c=4.3=12
Vậy độ dài 3 cạnh của tam giác đó tỉ lệ 1,3,4 lần lượt là 3,9 và 12 (cm)
Gọi a , b và c lần lượt là độ dài 3 cạnh của tam giác đó tỉ lệ với 1:3:4 .
a/1=b/3=c/4 và a+b+c=24 (chu vi tam giác)
Áp dụng tính chất dãy tỉ lệ số bằng nhau :
a/1=b/3=c/4=a+b+c/1+3+4=24/8=3
Suy ra :a/1=3=>a=1.3=3
b/3=3=>b=3.3=9
c/4=3=>c=4.3=12
Vậy độ dài 3 cạnh của tam giác đó tỉ lệ 1,3,4 lần lượt là 3,9 và 12 (cm)
1) Goi x,y,z lan luot la cac goc cua tam giac tren. ta lap duoc:
x/3=y/5=z/7
Gia xu 60 do la so do cua goc thu nhat thi ta suy ra: x/3=y/5=z/7=60/3=20
=> x=60 ; y=100 ; z=140
Do 60+100+140 khong bang 180 nen tam giac nay khong ton tai.
Gia xu 60 do la so do cua goc thu 2 thi suy ra: x/3=y/5=z/7=60/5=12
=> x=36 ; y=60 ; z=84
Do 36+60+84 bang 180 nen tam giac nay ton tai
Gia xu 60 la so do cua goc thu 3 thi suy ra: x/3=y/5=z/7=60/7
=> x=180/7 ; y=300/7 ; z=60
Do 180/7+300/7+60 khong bang 180 nen tam giac nay khong ton tai
Vay tam giac tren chi co the ton tai khi goc thu 2 hay goc ti le voi 5 cua no co so do la 60 do.
2) goi cac canh cua tam giac nay lan luot la a,b,c. Theo de bai ta co:
a=3k ; b=4k ; c=8k
Vi a+b ( hay 3k+4k=7k) < c ( hay 8k ) nen tam giac nay khong ton tai
\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)
Vậy ...
\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)
Bài 1: Chu vi hình chữ nhật là 90 m suy ra tổng độ dài hai cạnh là 45m
Gọi hai cạnh cần tìm là a, b (m)
ta có a/b=2/3 suy ra a/2=b/3=\(\frac{a+b}{2+3}=\frac{45}{5}=9\) ( vì a+b=45)
suy ra a=18, b=27
diện tích HCN là 486m2
a: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có: a/4=b/5=c/7 và a+b+c-2a=2
Áp dụng tính chất của DTBSN, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c-2a}{4+5+7-2\cdot4}=\dfrac{2}{8}=\dfrac{1}{4}\)
=>a=1; b=5/4; c=7/4
b: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có:
a/2=b/4=c/5
Áp dụng tính chất của DTSBN, ta đc:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{33}{11}=3\)
=>a=6; b=12; c=15
Bài 1:
Gọi độ dài của 3 cạnh tam giác là \(x;y;z\) \(\left(x;y;z>0;x:y:z=2:3:4\right)\) và ba chiều cao tương ứng là \(a;b;c\)
Đặt: \(x=2.t\)
\(y=3.t\)
\(z=4.t\)
Gọi S là diện tích của tam giác đó.
\(2S=x.a=y.b=z.c\)
\(\Rightarrow a.2.t=b.3.t=c.4.t\)
\(\Rightarrow2.a=3.b=c.4\)
\(\Rightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Vậy 3 chiều cao tương ứng với 3 cạnh tỉ lệ với: \(6;4;3\)
Bài 2:
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o
=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - \(\widehat{ABC}\)
=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - 60o
=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 120o
Ta có: \(\widehat{IAC}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) (AI là tia pg)
\(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BCA}\) (CI là tia pg)
=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) + \(\frac{1}{2}\) \(\widehat{BCA}\)
=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) (\(\widehat{BAC}\) + \(\widehat{BCA}\))
=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\). 120o = 60o
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{IAC}\) + \(\widehat{ICA}\) + \(\widehat{AIC}\) = 180o
=> \(\widehat{AIC}\) = 180o - ( \(\widehat{IAC}\) + \(\widehat{ICA}\))
=> \(\widehat{AIC}\) = 180o - 60o = 120o
b) Nối B với I
Kẻ IE \(\perp\) BC; IH \(\perp\) AB và ID \(\perp\) AC
Ta có: \(\widehat{AIC}\) = \(\widehat{QIP}\) = 120o (đối đỉnh)
Áp dụng tc tgv ta có:
\(\widehat{BIH}\) + \(\widehat{HBI}\) = 90o
\(\widehat{BIE}\) + \(\widehat{IBE}\) = 90o
=> \(\widehat{BIH}\) + \(\widehat{HBI}\) + \(\widehat{BIE}\) + \(\widehat{IBE}\) = 180o
=> (\(\widehat{HBI}\) + \(\widehat{IBE}\)) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o
=> \(\widehat{ABC}\) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o
=> 60o + \(\widehat{HIE}\) = 180
=> \(\widehat{HIE}\) = 120o
=> \(\widehat{QIP}\) = \(\widehat{HIE}\)
Lại có: \(\widehat{QIE}\) + \(\widehat{EIP}\) = \(\widehat{QIP}\)
\(\widehat{QIE}\) + \(\widehat{QIH}\) = \(\widehat{HIE}\) mà \(\widehat{QIP}\) = \(\widehat{HIE}\) => \(\widehat{EIP}\) = \(\widehat{QIH}\) Xét \(\Delta\)HIA vuông tại H và \(\Delta\)DIA vuông tại D có: IA chung \(\widehat{HAI}\) = \(\widehat{DAI}\) (tia pg) => \(\Delta\)HIA = \(\Delta\)DIA (ch - gn) => HI = DI (2 cạnh t/ư) (1) Tương tự: \(\Delta\)EIC = \(\Delta\)DIC (ch - gn) => EI = DI (2 cạnh t/ư) (2) Từ (1) và (2) suy ra HI = EI. Xét \(\Delta\)QIH vuông tại H và \(\Delta\)PIE vuông tại E có: HI = IE (c/m trên) \(\widehat{EIP}\) = \(\widehat{QIH}\) (c/m trên) => \(\Delta\)QIH = \(\Delta\)PIE (ch - gn) => QI = PI (2 cạnh t/ư)