trong mặt phẳng OXY cho tam giác ABC có A ( 1/3 ; 2) B ( -1;-5) C(5;4)
A) tìm tọa độ điểm m thỏa : vecto MA+ vecto MB = Vecto CB
ai giúp mình với ngày mai phải làm rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AB}=\left(1;-2\right)\Rightarrow AB=\sqrt{5}\)
\(\overrightarrow{AC}=\left(-2;2\right)\Rightarrow AC=2\sqrt{2}\)
\(BC=\left(-3;4\right)\Rightarrow BC=5\)
Chu vi tam giác ABC: \(AB+AC+BC=\sqrt{5}+2\sqrt{2}+5\)
\(AB=\sqrt{\left(5-1\right)^2+\left(-3+1\right)^2}=2\sqrt{5}\)
\(AC=\sqrt{\left(0-1\right)^2+\left(1+1\right)^2}=\sqrt{5}\)
\(BC=\sqrt{\left(0-5\right)^2+\left(1+3\right)^2}=\sqrt{29}\)
=>C=3 căn 5+căn 29
\(AB=\sqrt{\left(0+1\right)^2+\left(2+3\right)^2}=\sqrt{26}\)
\(AC=\sqrt{\left(2+1\right)^2+\left(1+3\right)^2}=\sqrt{3^2+4^2}=5\)
\(BC=\sqrt{\left(2-0\right)^2+\left(1-2\right)^2}=\sqrt{5}\)
=>\(C=\sqrt{26}+5+\sqrt{5}\left(cm\right)\)
Ta có A B → = 2 ; − 2 B C → = 2 ; 2 C A → = − 4 ; 0 ⇒ A B = 2 2 + − 2 2 = 2 2 B C = 2 2 + 2 2 = 2 2 C A = − 4 2 + 0 2 = 4
Vậy chu vi P của tam giác ABC là P =AB + BC + CA = 4 + 4 2
Chọn B.
Tọa độ trọng tâm G x G ; y G là x G = 1 − 2 + 5 3 = 4 3 y G = 3 + 4 + 3 3 = 10 3 .
Chọn D.
Gọi I(a; b) là tâm đường tròn ngoại tiếp tam giác ABC.
A I 2 = B I 2 A I 2 = C I 2 ⇔ a − 0 2 + b − 2 2 = a + 2 2 + b − 8 2 a − 0 2 + b − 2 2 = a + 3 2 + b − 1 2
⇔ a 2 + b 2 − 4 b + 4 = a 2 + 4 a + 4 + b 2 − 16 b + 64 a 2 + b 2 − 4 b + 4 = a 2 + 6 a + 9 + b 2 − 2 b + 1
4 a − 12 b = − 64 6 a + 2 b = − 6 ⇔ a − 3 b = − 16 3 a + b = − 3
⇔ a = − 5 2 b = 9 2
Chọn B.
\(\overrightarrow{BC}=\left(-4;-4\right)=-4\left(1;1\right)\)
Phương trình BC: \(1\left(x-4\right)-1\left(y-1\right)=0\Leftrightarrow x-y-3=0\)
Phương trình AH qua A và vuông góc BC:
\(1\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow x+y-3=0\)
H là giao điểm AH và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}x-y-3=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow H\left(3;0\right)\)
\(\Rightarrow\overrightarrow{AH}=\left(2;-2\right)\Rightarrow AH=2\sqrt{2}\)
Lời giải:
Gọi tọa độ điểm $M$ là \((a;b)\)
Khi đó: \(\left\{\begin{matrix} \overrightarrow{MA}=\left(\frac{1}{3}-a;2-b\right)\\ \overrightarrow{MB}=(-1-a;-5-b)\\ \overrightarrow{CB}=(-6;-9)\end{matrix}\right.\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CB}\)
\(\Leftrightarrow \left(\frac{1}{3}-a;2-b\right)+(-1-a;-5-b)=(-6;-9)\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}-a+(-1-a)=-6\\ 2-b+(-5-b)=-9\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{8}{3}\\ b=3\end{matrix}\right.\)
Vậy tọa độ điểm $M$ là \(\left(\frac{8}{3};3\right)\)