M, m là Max, min của y = l x2 + 4x + a l trên đoạn [1; 3]. Tìm các a để M + 2m = 34
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Vì a=-1<0 nên hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (-∞;2]
Bảng biến thiên là:
x | -∞ | 2 | +∞ |
y | -∞ | 1 | -∞ |

Đặt \(\sqrt{x^2+4x+5}=t\Rightarrow t\in\left[\sqrt{5};\sqrt{17}\right]\)
\(\Rightarrow y=f\left(t\right)=t^2-2t+7\)
\(-\dfrac{b}{2a}=1\notin\left[\sqrt{5};\sqrt{17}\right]\)
\(f\left(\sqrt{5}\right)=10+4\sqrt{5}\) ; \(f\left(\sqrt{17}\right)=22+4\sqrt{17}\)
\(\Rightarrow y_{min}=10+4\sqrt{5}\) ; \(y_{max}=22+4\sqrt{17}\)

\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)+10=-y^2\)
\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)+10\le0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y+5\right)\le0\)
\(\Leftrightarrow-5\le x+y\le-2\)
\(\Leftrightarrow-4\le x+y+1\le-1\)
\(A_{max}=-1\) khi \(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
\(A_{min}=-4\) khi \(\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)

Không có max
`a)sqrt{x^2-2x+5}`
`=sqrt{x^2-2x+1+4}`
`=sqrt{(x-1)^2+4}`
Vì `(x-1)^2>=0`
`=>(x-1)^2+4>=4`
`=>sqrt{(x-1)^2+4}>=sqrt4=2`
Dấu "=" xảy ra khi `x=1.`
`b)2+sqrt{x^2-4x+5}`
`=2+sqrt{x^2-4x+4+1}`
`=2+sqrt{(x-2)^2+1}`
Vì `(x-2)^2>=0`
`=>(x-2)^2+1>=1`
`=>sqrt{(x-2)^2+1}>=1`
`=>sqrt{(x-2)^2+1}+2>=3`
Dấu "=" xảy ra khi `x=2`


\(x^4+y^4+\dfrac{1}{xy}=xy+2\)
\(\Leftrightarrow\left(x^2-y^2\right)^2=xy-\dfrac{1}{xy}+2-2x^2y^2\ge0\)
Đặt \(xy=a\)
\(\Rightarrow-2a^3+a^2+2a-1\ge0\)
\(\Leftrightarrow\left(a+1\right)\left(a-1\right)\left(1-2a\right)\ge0\)
Ta có a > 0
\(\Rightarrow\left(a-1\right)\left(2a-1\right)\le0\)
\(\Rightarrow\dfrac{1}{2}\le a\le1\) \(\Rightarrow.......\)