K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 6 2020

\(\overrightarrow{BC}=\left(-5;-15\right)=-5\left(1;3\right)\)

Đường thẳng AH vuông góc BC nên nhận \(\left(1;3\right)\) là 1 vtpt

Phương trình AH:

\(1\left(x-0\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-9=0\)

A là giao điểm AH và denta nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+3y-9=0\\5x-7y-1=0\end{matrix}\right.\) \(\Rightarrow A\left(3;2\right)\)

21 tháng 1 2021

a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)

\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

21 tháng 1 2021

Còn phần b,c,d,e nx bn C:

16 tháng 6 2017

Đáp án B

 => Đường thẳng AB có pt là: x- y – 5= 0.

Gọi G(a;3a- 8) suy ra C( 3a- 5; 9a -19).

Ta có: 

Vậy C( 1 ; -1) và  C( -2 ; 10)

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Câu 1: Chưa đủ dữ kiện để làm. Bạn xem lại đề. 

Câu 2: Gọi tọa độ điểm H(a,b)

Ta có: \(\overrightarrow{AH}=(a-3; b-2); \overrightarrow{BC}=(1;8); \overrightarrow{BH}=(a-4; b+1); \overrightarrow{AC}=(2; 5)\)

Vì H là trực tâm tam giác ABC nên:

\(\left\{\begin{matrix} \overrightarrow{AH}.\overrightarrow{BC}=0\\ \overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a-3+8(b-2)=0\\ 2(a-4)+5(b+1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+8b=19\\ 2a+5b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{-71}{11}\\ b=\frac{35}{11}\end{matrix}\right.\)

15 tháng 7 2017

Cho hình vẽ 

A B C D I F

Tam giác BEC cân và có \(\widehat{BEC}=150^o\) \(\Rightarrow\) tam giác BEC cân tại E 

Gọi H là hình chiếu của E lên AD \(\Rightarrow\) H là trung điểm AD và HE \(=\) d E; AD \(=\) 3

Đặt cạnh hình vuông là \(AB=x\) 

Tam giác BEC cân tại E có \(\widehat{BEC}=150^o\Rightarrow\widehat{BEC}=15^o\) . Gọi I là trung điểm của \(BC\Rightarrow BI=\frac{x}{2};EI=x-3\)

Tam giác BIE vuông tại I có góc \(\widehat{EBI}=15^o\Rightarrow tan15^o=\frac{EI}{BI}=\frac{2x-6}{x}\)

\(\Rightarrow2-\sqrt{3}=\frac{2x-6}{x}\Leftrightarrow x=2\sqrt{3}\) 

Phương trình đường thẳng EH qua điểm E và vuông góc với \(AD\Rightarrow EH\div4x+3y+4=0\)

Đường thằng \(AB\\ EH\Rightarrow AB\) có dạng \(''d''\div4x+3y+a=0\)

Ta có d \(''E,AB''=\frac{⊥a-4⊥}{5}=BI=\sqrt{3}\Leftrightarrow a=4⊥5\sqrt{3}\)

Phương trình đường thẳng AB là \(''d''\div4x+3y+4⊥5\sqrt{3}=0\)

P/s; Bộ khó lắm à . 

20 tháng 12 2017

11 tháng 11 2019

13 tháng 5 2018