viết phương trình mặt cầu (S) biết :
a) (s) có tâm I(2;-1;3) và tiếp xúc (Oxy)
b)(S) qua A(1;-1;4) và tiếp xúa với các trục toạ độ
c) (S) có tâm I(6;-8;3) và tiếp xúc với Oz
d) (S) có r=2 tiếp xúc (Oyz) và có tâm nằm trên tia Ox
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta có h = d(I, (P)) = 1
Gọi (C) là đường tròn giao tuyến có bán kính r.
Vì S = r2.π = 2π <=> r = √2
Mà R2 = r2 + h2 = 3 => R = √3
Vậy phương trình mặt cầu tâm i (0; -2; 1) và bán kính R = √3
a.
\(\overrightarrow{AI}=\left(2;4;0\right)\Rightarrow R^2=AI^2=20\)
Phương trình (S):
\(\left(x-5\right)^2+\left(y-5\right)^2+z^2=20\)
b.
\(R=d\left(O;\left(\alpha\right)\right)=\dfrac{\left|16.0-15.0-12.0+75\right|}{\sqrt{16^2+15^2+12^2}}=3\)
Phương trình (S): \(x^2+y^2+z^2=9\)
c.
Đường thẳng \(\Delta\) qua \(A\left(-1;1;0\right)\) và nhận \(\overrightarrow{u}=\left(-1;1;-3\right)\) là 1 vtcp
\(\overrightarrow{AI}=\left(0;1;0\right)\)
\(R=d\left(I;\Delta\right)=\dfrac{\left|\left[\overrightarrow{AI};\overrightarrow{u}\right]\right|}{\left|\overrightarrow{u}\right|}=\dfrac{\sqrt{10}}{\sqrt{11}}\)
Phương trình (S): \(\left(x+1\right)^2+\left(y-2\right)^2+z^2=\dfrac{10}{11}\)
Do (S) tiếp xúc Oxy \(\Rightarrow R=\left|z_I\right|=2\)
Phương trình (S):
\(\left(x-3\right)^2+\left(y+4\right)^2+\left(z-2\right)^2=4\)