Đố: Cho đường tròn (O;2cm). Một điểm M nằm ngoài đường tròn sao cho \(OM=3cm\). Một đường thẳng d thay đổi đi qua M cắt đường tròn tại 2 điểm A và B. Xác định đường thẳng d để tổng \(MA+MB\)đạt GTLN và tìm GTLN đó.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Đáp án:
Kẻ \(OH\perp AB\)tại H
Không mất tính tổng quát, giả sử A nằm giữa M và B.
Ta có \(MA+MB\)\(=MA+MA+AH+HB\)\(=2MA+AH+HB\)
Đường tròn (O;2cm) có dây AB, \(OH\perp AB\)tại H \(\Rightarrow\)H là trung điểm AB \(\Rightarrow AH=HB\left(=\frac{AB}{2}\right)\)
Do đó \(MA+MB=2MA+AH+HB\)\(=2MA+2AH\)\(=2\left(MA+AH\right)\)\(=2MH\)
Xét đường thẳng OH có MH là đường vuông góc kẻ từ M đến OH và OM là một đường xiên kẻ từ M đến OH nên \(MH\le OM=3cm\)\(\Rightarrow MA+MB=2MH\le2OM=2.3=6\)
Dấu "=" xảy ra khi \(MH=OM\Rightarrow H\equiv O\Rightarrow\)Đường thẳng d đi qua O.
Vậy GTLN của \(MA+MB\)là 6cm khi đường thẳng d đi qua O