Cho số phức z có phần thực thuộc đoạn [-2;2] thỏa 2 | z - i | = | z - z + 2 i | . Tìm giá trị nhỏ nhất của biểu thức P = 1 + | z - 2 - i | 2018 - | z | 2
A. -4
B. -7
C. -3
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tập hợp các điểm thuộc đường thẳng x = -2
b) Tập hợp các điểm thuộc đường thẳng y = 3
c) Tập hợp các điểm thuộc mặt phẳng nằm giữa hai đường thẳng song song x = -1 và x = 2 (hình có gạch sọc)
d) Phần mặt phẳng giới hạn bởi các đường thẳng song song y = 1 và y = 3( kể cả các điểm thuộc hai đường thẳng đó).
e) Các điểm thuộc hình chữ nhật với các cạnh nằm trên các đường thằng x = -2, x = 2 , y = -2, y = 2.
Phần thực của z thuộc đoạn [-1; 2]
⇔ -1 ≤ x ≤ 2.
phần ảo của z thuộc đoạn [0; 1]
⇔ 0 ≤ y ≤ 1.
Vậy tập hợp các điểm biểu diễn số phức z là hình gạch sọc dưới đây:
Giả sử z = x + yi (x, y ε R), khi đó trên mặt phẳng toạ độ Oxy, điểm M(x;y) biểu diaãn số phức z.
a) Phần thực của z bằng -2, tức là x = -2, y ε R.
Vậy tập hợp các điểm biểu diễn số phức z là đường thẳng x = -2 trên mặt phẳng toạ độ Oxy
b) Ta có x ε R và y = 3
Vậy tập hợp điểm biểu diễn số phức z là đường thẳng y = 3 trên mặt phẳng Oxy.
c) Ta có x ε (-1;2) và y ε R.
Vậy tập hợp số phức z cần tìm là các điểm nằm giữa hai đường thẳng x = -1 và x = 2 trên mặt phẳng Oxy
d) Ta có x ε R và y ε [1;3]
Vậy tập hợp các điểm cần tìm là phần mặt phẳng nằm giữa hai đường thẳng y = 1 và y = 3
e) Ta có x ε [-2; 2] và y ε [-2; 2]
Vậy tập hợp các điểm cần tìm là phần mặt phẳng thuộc hình vuông (kể cả cạnh) được vẽ trên hình e (phần gạch sọc).
Đáp án B.
Ta có: Phần thực: –4, phần ảo: –3
Hai ý (3) và (4) sai.