K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2021

- Vì vai trò của a , b ,c trong bài này là như nhau nên có thể giả sử \(a\le b\le c\)mà không làm giảm đi tính tổng quát của bài toán . Khi đó ta có :

\(3=a+b+c\le3c\Rightarrow c\ge1\Rightarrow1\le x\le2\)

Ta có : \(a^2+b^2\le\left(a+b\right)^2\)(vì \(a,b\ge0\))

\(\Rightarrow A\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2=2c^2-6c+9\)

          \(\le2.\left(c^2-3c+\frac{9}{4}\right)+\frac{9}{2}=2\left(c-\frac{3}{2}\right)^2+\frac{9}{2}\)

Do \(1\le c\le2\)nên \(-\frac{1}{2}\le x-\frac{3}{2}\le\frac{1}{2}\Rightarrow|c-\frac{3}{2}|\le\frac{1}{2}\)

\(\Rightarrow2|x-\frac{3}{2}|^2+\frac{9}{2}\le2.\frac{1}{4}+\frac{9}{2}=5\Rightarrow A\le5\)

Dễ thấy khi a = 0 ; b = 1 ; c = 2 thỏa mãn \(a,b,c\in\left[0;2\right];a+b+c=3\)và \(a\le b\le c\)thì A = 5

Vậy : \(A_{max}=5\)

24 tháng 1 2021

Do \(a,b,c\in\left[0;2\right]\)nên \(\left(a-2\right)\left(b-2\right)\left(c-2\right)\le0\)\(\Leftrightarrow abc-2\left(ab+bc+ca\right)+4\left(a+b+c\right)-8\le0\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4+abc\Leftrightarrow\left(a+b+c\right)^2\ge a^2+b^2+c^2+abc+4\)\(\Leftrightarrow a^2+b^2+c^2\le5-abc\le5\)(Do \(a,b,c\ge0\))

Đẳng thức xảy ra khi trong 3 số a, b, c có một số bằng 0, một số bằng 1 và một số bằng 2

NV
14 tháng 12 2020

\(\left(a^2+b^2+c^2+1\right)x=ab+bc+ca\)

\(\Leftrightarrow x=\dfrac{ab+bc+ca}{a^2+b^2+c^2+1}\)

Ta có:

\(x^2-1=\dfrac{\left(ab+bc+ca\right)^2}{\left(a^2+b^2+c^2+1\right)^2}-1=\dfrac{\left(ab+bc+ca-a^2-b^2-c^2-1\right)\left(ab+bc+ca+a^2+b^2+c^2+1\right)}{\left(a^2+b^2+c^2+1\right)^2}\)

\(=\dfrac{\left[-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2-2\right]\left[\left(a+b+c\right)^2+a^2+b^2+c^2+2\right]}{4\left(a^2+b^2+c^2+1\right)^2}< 0\)

\(\Rightarrow x^2-1< 0\Rightarrow\left|x\right|< 1\)

15 tháng 5 2021

\(\text{f(x)}\)\(\text{>0}\)\(\text{⇔}\)\(\text{2x}\)2\(\text{-3x+1}\)\(>0\)\(\left\{{}\begin{matrix}x>1\\x< \dfrac{1}{2}\end{matrix}\right.\)

x(;\(\dfrac{1}{2}\))(1;+)

 

HQ
Hà Quang Minh
Giáo viên
9 tháng 10 2023

a) \(A = \left\{ {a \in \mathbb{Z}| - 4 < a <  - 1} \right\}\)

A là tập hợp các số nguyên a thỏa mãn \( - 4 < a <  - 1\).

\( - 4 < a <  - 1\) có nghĩa là: a là số nguyên nằm giữa \( - 4\) và \( - 1\). Có các số \( - 3; - 2\).

Vậy \(A = \left\{ { - 3; - 2} \right\}\)

b) \(B = \left\{ {b \in \mathbb{Z}| - 2 < b < 3} \right\}\)

B là tập hợp các số nguyên b thỏa mãn \( - 2 < b < 3\).

\( - 2 < b < 3\) có nghĩa là: b là số nguyên nằm giữa \( - 2\) và \(3\). Có các số \( - 1;0;1;2\).

Vậy \(B = \left\{ { - 1;0;1;2} \right\}\)

c) \(C = \left\{ {c \in \mathbb{Z}| - 3 < c < 0} \right\}\)

C  là tập hợp các số nguyên c thỏa mãn \( - 3 < c < 0\).

\( - 3 < c < 0\) có nghĩa là: c là số nguyên nằm giữa \( - 3\) và 0. Có các số \( - 2; - 1\).

Vậy \(C = \left\{ { - 2; - 1} \right\}\)

d) \(D = \left\{ {d \in \mathbb{Z}| - 1 < d < 6} \right\}\)

D là tập hợp các số nguyên d thỏa mãn \( - 1 < d < 6\).

\( - 1 < d < 6\) có nghĩa là: b là số nguyên nằm giữa \( - 1\) và 6. Có các số \(0;1;2;3;4;5\).

Vậy \(D = \left\{ {0;1;2;3;4;5} \right\}\)

NV
1 tháng 3 2022

Đặt \(f\left(x\right)=\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\)

Hàm \(f\left(x\right)\) hiển nhiên liên tục trên R

Do vai trò a;b;c như nhau, không mất tính tổng quát giả sử \(a< b< c\)

\(f\left(a\right)=\left(a-b\right)\left(a-c\right)\)

\(f\left(b\right)=\left(b-a\right)\left(b-c\right)\)

\(f\left(c\right)=\left(c-a\right)\left(c-b\right)\)

\(f\left(a\right).f\left(b\right)=\left(a-b\right)\left(a-c\right)\left(b-a\right)\left(b-c\right)=\left(a-b\right)^2\left(c-a\right)\left(b-c\right)\)

Do \(a< b< c\Rightarrow\left\{{}\begin{matrix}c-a>0\\b-c< 0\end{matrix}\right.\) \(\Rightarrow f\left(a\right).f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (a;b)

\(f\left(b\right).f\left(c\right)=\left(b-a\right)\left(b-c\right)\left(c-a\right)\left(c-b\right)=\left(b-c\right)^2\left(a-b\right)\left(c-a\right)\)

Do \(a< b< c\Rightarrow\left\{{}\begin{matrix}a-b< 0\\c-a>0\end{matrix}\right.\) \(\Rightarrow f\left(b\right).f\left(c\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (b;c)

Vậy pt đã cho luôn có 2 nghiệm phân biệt

(2x-x^2)(2x^3-3x-2)=0

=>x(2-x)(2x^3-3x-2)=0

=>x=0 hoặc 2-x=0 hoặc 2x^3-3x-2=0

=>\(x\in\left\{0;2;1,48\right\}\)

=>\(A=\left\{0;2;1,48\right\}\)

3<n^2<30

mà \(n\in Z^+\)

nên \(n\in\left\{2;3;4;5\right\}\)

=>B={2;3;4;5}

=>A giao B={2}

=>Chọn B

19 tháng 8 2017

\(A\cap B=\left\{1\right\}\)

\(A\cup B=\left\{-2;-1;0;1;2\right\}\)

11 tháng 6 2021

\(E=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)

\(A=\left\{1;-4\right\}\)

\(B=\left\{2;-1\right\}\)

a) Với mọi x thuộc A đều thuộc E \(\Rightarrow A\subset E\)

Với mọi x thuộc B đều thuộc E \(\Rightarrow B\subset E\)

b) \(A\cap B=\varnothing\)

\(\Rightarrow E\backslash\left(A\cap B\right)=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)

\(A\cup B=\left\{-4;-1;1;2\right\}\)

\(\Rightarrow E\backslash\left(A\cup B\right)=\left\{-5;-3;-2;0;3;4;5\right\}\)

\(\Rightarrow E\backslash\left(A\cup B\right)\subset E\backslash\left(A\cap B\right)\)

NV
2 tháng 1 2022

Đề bài sai

Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)

Khi đó  \(x< y\) nhưng \(z< y\)

2 tháng 1 2022

\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)

\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)

                \(b\left(a+c\right)=ba+bc\left(3\right)\)

\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)

\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)

\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

\(\Rightarrow x< y< z\)