cho tam giác ABC vuông tại A, điểm I(9;9) thuộc cạnh AB(IB<IA).Đường tròn (C) tâm I bán kính IB cắt AB,BC lần lượt tại D và E,AE cắt đừơng tròn (C) tại G(10;2).Biết GD=\(2\sqrt{10}\) và C thuộc (d):x-2y-10=0. Tìm toạ độ ba đỉnh tam giác A,B,C biết B có toạ độ nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha
c)Có BH=9 ; HC=16 mà BH+HC=BC => BC=25
Xét tam giác ABC vuông tại A có:
AB^2 + AC^2 = BC^2 (đ/l Py-ta-go)
mà BC=25
=>AB^2+AC^2=25^2=625
Xét tam giác AHB vuông tại H có:
AB^2=AH^2+BH^2 (1)
Xét tam giác AHC vuông tại H có:
AC^2=AH^2+HC^2 (2)
Cộng từng vế của (1) và (2) ta được :
AB^2+AC^2=(AH^2+BH^2)+(AH^2+HC^2)
=2AH^2+BH^2+HC^2
mà AB^2+AC^2=625 ; BH=9 ; HC=16
=>625=2AH^2+81+256
=>625=2AH^2+337
=>2AH^2=625-337=288
=>AH^2=144
=>AH=12
d)Gọi M là trung điểm của BC => BC=2BM=2CM
Có AH vuông góc BC mà AB<AC
=>HB<HC mà HB+HC=BC
=>HB<1/2 BC
=>HB<BM
Có AH vuông góc BC hay AH vuông góc HM
=>tam giác AHM vuông tại H
=>AH<AM (AM là cạnh huyền)
CM được AH=AD=AE
mà AH<BM
=>BM>AD và BM>AE
=>2BM > AD+AE=DE
mà 2BM=BC
=>BC>DE
=>BH+HC>DE
hay BD+CE>DE (CM được BH=BD và HC=CE)
Vậy.....
a: Xét ΔABD vuông tại D và ΔACD vuông tại D có
AB=AC
AD chung
=>ΔABD=ΔACD
=>BD=CD
=>D là trung điểm của BC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF
=>ΔAEF cân tại A
c: CI+2AD
=3IK+2*3/2*AK
=3*(IK+AK)>3AI
a: Xét tứ giác AHCM có
I là trung điểm của AC
I là trung điểm của HM
Do đó: AHCM là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCM là hình chữ nhật
a) Ta có:
- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.
- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.
Vậy tam giác ABD = tam giác EBD.
b) Ta có:
- Góc ABD = góc EBD (do chứng minh ở câu a).
- Góc ADB = góc EDB (do cùng là góc vuông).
- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).
- Do đó, BD vuông góc với AE.
- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.
c) Ta có:
- Tia Cx vuông góc với tia BD tại H.
- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.
- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.
- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).
- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
=>BA=BE và DA=DE
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(1)
Ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE
c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)
nên AE//CF
Ta có: BD\(\perp\)AE
AE//CF
Do đó: BD\(\perp\)CF
mà BD\(\perp\)CH
và CH,CF có điểm chung là C
nên C,H,F thẳng hàng
a: Xét tứ giác AHCE có
I là trung điểm chung của AC,HE
góc AHC=90 độ
HA=HC
=>AHCE là hình vuông
b: Để AHCE là hình vuông thì ΔABC cần có những điều kiện sau:
AB=AC; góc B=45 độ