K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình bạn tự vẽ nha

c)Có BH=9 ; HC=16 mà BH+HC=BC => BC=25

Xét tam giác ABC vuông tại A có:

    AB^2 + AC^2 = BC^2 (đ/l Py-ta-go)

          mà BC=25

=>AB^2+AC^2=25^2=625

Xét tam giác AHB vuông tại H có:

    AB^2=AH^2+BH^2   (1)

Xét tam giác AHC vuông tại H có:

     AC^2=AH^2+HC^2   (2)

Cộng từng vế của (1) và (2) ta được :

  AB^2+AC^2=(AH^2+BH^2)+(AH^2+HC^2)

                      =2AH^2+BH^2+HC^2

mà AB^2+AC^2=625 ; BH=9 ; HC=16

=>625=2AH^2+81+256

=>625=2AH^2+337

=>2AH^2=625-337=288

=>AH^2=144

=>AH=12

d)Gọi M là trung điểm của BC => BC=2BM=2CM

Có AH vuông góc BC mà AB<AC

=>HB<HC  mà HB+HC=BC

=>HB<1/2 BC 

=>HB<BM

Có AH vuông góc BC hay AH vuông góc HM

=>tam giác AHM vuông tại H

=>AH<AM (AM là cạnh huyền)

 CM được AH=AD=AE

mà AH<BM

=>BM>AD và BM>AE

=>2BM > AD+AE=DE

mà 2BM=BC

=>BC>DE

=>BH+HC>DE

hay BD+CE>DE  (CM được BH=BD và HC=CE)

Vậy.....

 

a: Xét ΔABD vuông tại D và ΔACD vuông tại D có

AB=AC

AD chung

=>ΔABD=ΔACD

=>BD=CD

=>D là trung điểm của BC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD

=>AE=AF 

=>ΔAEF cân tại A

c: CI+2AD

=3IK+2*3/2*AK

=3*(IK+AK)>3AI

23 tháng 4 2020

bạn vào link này nhé, mk ko bt cho ảnh kiểu j hết

file:///C:/Users/ANH%20QUY/Pictures/Capture.PNG

20 tháng 12 2021

a: Xét tứ giác AHCM có 

I là trung điểm của AC

I là trung điểm của HM

Do đó: AHCM là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCM là hình chữ nhật

16 tháng 12 2023

a) Ta có:

- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.

- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.

Vậy tam giác ABD = tam giác EBD.

 

b) Ta có:

- Góc ABD = góc EBD (do chứng minh ở câu a).

- Góc ADB = góc EDB (do cùng là góc vuông).

- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).

- Do đó, BD vuông góc với AE.

- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.

 

c) Ta có:

- Tia Cx vuông góc với tia BD tại H.

- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.

- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.

- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).

- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.

16 tháng 12 2023

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED

=>BA=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

Ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE

c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF

Ta có: BD\(\perp\)AE

AE//CF

Do đó: BD\(\perp\)CF

mà BD\(\perp\)CH

và CH,CF có điểm chung là C

nên C,H,F thẳng hàng

a: Xét tứ giác AHCE có

I là trung điểm chung của AC,HE

góc AHC=90 độ

HA=HC

=>AHCE là hình vuông

b: Để AHCE là hình vuông thì ΔABC cần có những điều kiện sau:

AB=AC; góc B=45 độ