Cho hàm số f(x) xác định trên ℝ \ { - 1 ; 1 } và thỏa mãn:
Tính giá trị của biểu thức P = f(0) + f(4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Ta có f x = ∫ f ' x d x = ∫ 1 x 2 - 1 d x = 1 2 ln x - 1 x + 1 + C .
· Với [ x > 1 x < - 1 ⇒ f x = 1 2 ln x - 1 x + 1 + C mà f - 3 + f 3 = 0 ⇒ 2 C + 1 2 ln 1 2 + 1 2 ln 2 = 0 ⇔ C = 0 .
· Với - 1 < x < 1 ⇒ f x = 1 2 ln 1 - x x + 1 + C mà f - 1 2 + f 1 2 = 2 ⇒ 2 C + 1 2 ln 1 3 + 1 2 ln 3 = 2 ⇔ C = 1 .
Vậy T = f - 2 + f 0 + f 4 = 1 2 ln - 2 - 1 - 2 + 1 + 1 2 ln 1 - 0 0 + 1 + 1 + 1 2 ln 4 - 1 4 + 1 = 1 + 1 2 ln 9 5 .
Đáp án D
Dựa vào bảng biến thiên, ta có lim x → 1 y = ± ∞ ⇒ x = − 1 là TCĐ của đồ thị hàm số
Và lim x → ± ∞ y = + ∞ suy ra hàm số không có tiệm cận ngang
Chọn C
Hàm số f(x) = 2 x 2 + m x + 2 3 2 xác định với mọi x ∈ ℝ
Vì m nguyên nên
Vậy có tất cả 7 giá trị m thỏa mãn điều kiện đề bài.
Chọn B.
Xét đáp án A:
Ta có:
nên đáp án A không thể xảy ra.
Xét đáp án C:
Ta có:
Nên phương án C không thể xảy ra.
Xét đáp án D:
Ta có:
nên phương án D không thể xảy ra.
Bằng phương pháp loại suy, ta có đáp án B.
Tuy nhiên, ta có thể chỉ ra một hàm thỏa mãn đáp án B vì
Đáp án D
Ta có y ' = f 1 - x + 2018 x + 2019 ' = 1 - x ' . f ' 1 - x + 2018 = - f ' 1 - x + 2018
= - x 3 - x . g 1 - x - 2018 + 2018 = - x 3 - x . g 1 - x mà g 1 - x < 0 ; ∀ x ∈ ℝ
Nên y ' < 0 ⇔ - x 3 - x . g 1 - x < 0 ⇔ x 3 - x . g 1 - x > 0 ⇔ x 3 - x < 0 ⇔ [ x > 3 x < 0
Khi đó, hàm số y = f 1 - x + 2018 x + 2019 nghịch biến trên khoảng 3 ; + ∞
Đáp án C