K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

Thay lần lượt vào mà giải

4 tháng 5 2019

1 điểm , về chỗ

14 tháng 1 2017

`f(x)  = (x-1)(x+2) = 0`.

`=>` \(\left[ \begin{array}{l}x=1\\x=-2\end{array} \right.\) 

Với `x = 1 => g(x) = 1 + a + b + 2 = 0`.

`<=> a + b = -3`.

Với `x = -2 => g(x) = -8 + 4a - 2b + 2 = 0`.

`<=> 4a - 2b = 6`.

`<=> 2a - b = 6`.

`=> ( a + b) + (2a - b) = -3 + 6`.

`=> 3a = 3`.

`=> a = 1.`

`=> b = -4`.

Vậy `(a,b) = {(1, -4)}`.

17 tháng 5 2022

sai rồi kìa bạn ơi

 

15 tháng 6 2018

Đáp án đúng : B

6 tháng 5 2018

+) Để f (x) có nghiệm thì : f (x) = 0

=> \(\left(x-1\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy x = 1 và x = \(-2\) là nghiệm của đa thức f (x)

Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = \(-2\) là nghiệm của g (x)

\(\Rightarrow g\left(1\right)=1^3+a\cdot1^2+b\cdot1+2=0\\ \Rightarrow1+a+b+2=0\\ \Rightarrow3+a+b=0\\ \Rightarrow b=-3-a\left(1\right)\)

+) \(g\left(-2\right)=\left(-2\right)^3+a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+2=0\\ \Rightarrow-8+4a-2b+2=0\\ \Rightarrow2\cdot\left(-4\right)+2a+2a-2b+2=0\\ \Rightarrow2\cdot\left(-4+a+a-b+1\right)=0\\ \Rightarrow2\cdot\left(-3+2a-b\right)=0\\ \Rightarrow\left(-3+2a-b\right)=0\)

=> 2a \(-\) b = 3 \(\left(2\right)\)

+) Thay \(\left(1\right)vào\left(2\right)\) ta được :

\(2a-\left(-3-a\right)=3\\ \Rightarrow2a+3+a=3\\ \Rightarrow3a=3-3\\ \Rightarrow3a=0\\ \Rightarrow a=0\)

Do \(2a-b=3 \Rightarrow2\cdot0-b=3\Rightarrow0-b=3\Rightarrow b=-3\)

Vậy a = 0 ; b = \(-\)3

14 tháng 8 2021

Mình cảm ơn ạ