K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2018

giả sử có một đường thẳng d' đi qua A và vuông góc với d. Do đường thẳng d có véc tơ pháp tuyến là \(\overrightarrow{n}\)= (2;1) nên suy ra véc tơ pháp tuyến của đường thẳng d' là \(\overrightarrow{n'}\)= (1;-2) mà đường thẳng d' đi qua điểm A(2;1) .Suy ra

phương trình của đường thẳng d' có dạng:

1(x-2) - 2(y-1) =0

⇔x - 2y =0

Suy ra tọa độ của hình chiếu H của A lên đường thẳng d là nghiệm của phương trình:

\(\left\{{}\begin{matrix}x-2y=0\\2x+y-7=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=\dfrac{14}{5}\\y=\dfrac{7}{5}\end{matrix}\right.\)

vậy .........

5 tháng 7 2019

Đáp án A

Hình chiếu vuông góc của điểm M(x;y;z) trên mặt phẳng (Oxy) M'(x;y;0)

Cách giải: Hình chiếu vuông góc của A(3;2;-1) trên mặt phẳng  (Oxy) là điểm  H(3;2;0)

23 tháng 4 2017

Đáp án A

31 tháng 8 2018

Chọn đáp án A.

7 tháng 10 2017

Đáp án C

Do chiếu xuống (Oxy) nên z=0  x,y giữ nguyên.

2 tháng 5 2023

Gọi \(AH\) là hình chiếu của \(A\) trên \(d\)

\(\Rightarrow AH:-2x+4y+c'=0\)

AH đi qua \(A\left(1;1\right)\Rightarrow-2.1+4.1+c'=0\)

\(\Rightarrow c'=-2\)

\(\Rightarrow\) phương trình \(AH\) là : \(-2x+4y-2=0\Rightarrow-x+2y-1=0\)

Tọa độ H là nghiệm của hệ phương trình :

\(\left\{{}\begin{matrix}-x+2y-1=0\\4x+2y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{3}{10}\end{matrix}\right.\)

\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)

2 tháng 5 2023

 Gọi \(\left(d'\right)\) là đường thẳng qua A và vuông góc với (d). Do (d) có VTPT \(\overrightarrow{n_d}=\left(4;2\right)\) 

\(\Rightarrow\) \(\left(d'\right)\) có VTPT \(\overrightarrow{n_{d'}}=\left(2;-4\right)\) hay \(\left(d'\right):2x-4y+m=0\) \(\left(m\inℝ\right)\)

 Mà \(A\left(1;1\right)\in\left(d'\right)\) nên \(2-4+m=0\Leftrightarrow m=2\). Vậy đường thẳng qua A và vuông góc với \(d\) có pt là \(2x-4y+2=0\) hay \(x-2y+1=0\)

 Do đó hình chiếu vuông góc H của A lên d chính là giao điểm của d' và d. Nếu \(H\) có tọa độ \(\left(x_H;y_H\right)\) thì \(x_H;y_H\) thỏa mãn hệ phương trình \(\left\{{}\begin{matrix}x_H-2y_H+1=0\\4x_H+2y_H+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_H=-\dfrac{2}{5}\\y_H=\dfrac{3}{10}\end{matrix}\right.\)\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)

Vậy hình chiếu của A lên d có tọa độ \(\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)

1 tháng 6 2018

Đáp án C

Hình chiếu vuông góc của M(2;-1;4) lên mặt phẳng (Oxy)  điểm H(2;-1;0).

21 tháng 3 2017

Đáp án A.

Tọa độ điểm M 2 ; − 1 ; 1  trên mặt phẳng (Oxy) là M ' 2 ; − 1 ; 0 .

 

30 tháng 8 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi M’, M’’, M’’’ lần lượt là hình chiếu vuông góc của điểm M trên các mặt phẳng (Oxy), (Oyz), (Ozx).

Ta có:

     • M’( x 0 ;  y 0 ; 0)

     • M’’ (0;  y 0 ;  z 0 )

     • M’’’( x 0 ; 0;  z 0 )

31 tháng 8 2017

Chọn D

1 tháng 8 2019

Chọn D