K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 3 2017

Lời giải:

Vì mặt phẳng đi qua $A$ nên có dạng
\((P):a(x-1)+b(y-2)+c(z-3)=0\)

Ta có \(\overrightarrow{AB}=(-3,-1,2)\). Vì PT mặt phẳng đi qua $A,B$ nên

\(\overrightarrow{n_P}=(a,b,c)\perp \overrightarrow{AB}\Rightarrow -3a-b+2c=0\) \((1)\)

\(d(C,(P))=2d(D,(P))\Leftrightarrow \frac{|a-3b-2c|}{\sqrt{a^2+b^2+c^2}}=\frac{2|-a+b-2c|}{\sqrt{a^2+b^2+c^2}}\)

\(\Leftrightarrow (a-3b-2c)^2=4(-a+b-2c)^2\) \((2)\)

Từ \((1)\) thay \(2c=3a+b\) vào \((2)\) và khai triển thu được: \(\left[{}\begin{matrix}b=\dfrac{3a}{2}\\b=\dfrac{-5a}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}c=\dfrac{9a}{4}\\c=\dfrac{a}{4}\end{matrix}\right.\)

Do đó PTMP \(\left[{}\begin{matrix}a\left(x-1\right)+\dfrac{3}{2}a\left(y-2\right)+\dfrac{9}{4}a\left(z-3\right)=0\\a\left(x-1\right)-\dfrac{5}{2}a\left(y-2\right)+\dfrac{1}{4}a\left(z-3\right)=0\end{matrix}\right.\)

\(\leftrightarrow\left[{}\begin{matrix}4x+6y+9z-43=0\\4x-10y+z+13=0\end{matrix}\right.\)

25 tháng 3 2018

Chọn đáp án C.

Ta có

 Áp dụng công thức ta có:

V A B C D = 1 6 A B ⇀ . A C ⇀ . A D ⇀ = 1 2

14 tháng 5 2019

15 tháng 2 2017

Chọn D.

Gọi G(a,b,c) là trọng tâm của tứ diện, ta có:

1 tháng 11 2017

Chọn D.

Gọi G(a,b,c) là trọng tâm của tứ diện, ta có:

13 tháng 8 2017

Chọn A

26 tháng 10 2018

Chọn A

27 tháng 10 2019

25 tháng 6 2018

Đáp án C

20 tháng 10 2019

14 tháng 1 2022

Bài này hơi khó, mọi người giúp em với.

NV
14 tháng 1 2022

Không có mặt phẳng nào là mặt phẳng Oxyz cả nên chắc đề ko đúng. Giả sử nó là Oxy đi

Ý tưởng giải bài toán như sau:

- Viết phương trình mp trung trực (P) của đoạn AB

- Viết pt tham số đường thẳng d là giao của (P) và Oxy

- C thuộc d nên quy tọa độ C về 1 ẩn 

- Tính độ dài AB=AC sẽ tìm được tọa độ C

- Viết phương trình mp trung trực (Q) của AC

- Viết pt tham số đường thẳng d1 là giao của (P) và (Q)

- D thuộc d1 => quy tọa độ D theo 1 ẩn, tính độ dài AD=AB => tọa độ D

Câu b thì giải hệ 3 tích vô hướng: SA.SB, SA.SC, SB.SC=0