cho parabol \(y=\frac{1}{2}x^2\) giả sử đường thẳng đi qua I(0;1) cắt P tại A1,B1 và A2,B2. C/m \(\frac{1}{IA_1}+\frac{1}{IB_1}=\frac{1}{IA_2}+\frac{1}{IB_2}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để d đi qua A
\(\Leftrightarrow m.1+n=0\Rightarrow n=-m\Rightarrow y=mx-m\)
Phương trình hoành độ giao điểm (P) và d:
\(\frac{1}{2}x^2=mx-m\Leftrightarrow x^2-2mx+2m=0\) (1)
Để d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép
\(\Leftrightarrow\Delta'=m^2-2m=0\Rightarrow\left[{}\begin{matrix}m=0\Rightarrow n=0\\m=2\Rightarrow n=-2\end{matrix}\right.\)
- Với \(m=n=0\Rightarrow x^2=0\Rightarrow x=0\Rightarrow y=0\)
Tọa độ tiếp điểm là \(\left(0;0\right)\)
- Với \(\left[{}\begin{matrix}m=2\\n=-2\end{matrix}\right.\) \(\Rightarrow x^2-4x+4=0\Rightarrow x=2\Rightarrow y=2\)
Tọa độ tiếp điểm là \(\left(2;2\right)\)
a) Thay x=1 và y=-2 vào (P), ta được:
\(a\cdot1^2-4\cdot1+c=-2\)
\(\Leftrightarrow a-4+c=-2\)
hay a+c=-2+4=2
Thay x=2 và y=3 vào (P), ta được:
\(a\cdot2^2-4\cdot2+c=3\)
\(\Leftrightarrow4a-8+c=3\)
hay 4a+c=11
Ta có: \(\left\{{}\begin{matrix}a+c=2\\4a+c=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2-a=2-3=-1\end{matrix}\right.\)
Vậy: (P): \(y=3x^2-4x-1\)
Bài 1:
Vì (d) đi qua điểm A(1;3) nên thay x=1 và y=3 vào (d) ta có:
3=a.1+b
⇔a+b=3 (1)
Vì (d) đi qua điểm B(-3;-1) nên thay x=-3 và y=-1 vào (d) ta có:
-1 = a.(-3)+b
⇔-3a+b=-1
⇔ 3a - b=1 (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=3\\3a-b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4a=4\\3a-b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=1\\3.1-b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Vậy a=1, b=2 là giá trị cần tìm
Bài 2
1, Vì (d) đi qua A(1;2003) nên thay x =1, y=2003 vào (d) ta có:
2003 = 1 +m
⇔ m = 2002
Vậy m = 2002 là giá trị cần tìm
2, Ta có:
x - y +3 =0
⇔ y= x+3
Để (d) // y = x+3 thì:
\(\left\{{}\begin{matrix}1=1\left(\text{luôn đúng}\right)\\m\ne3\end{matrix}\right.\)
Vậy m ≠ 3 thì (d) // x-y+3=0
* Chúc bạn học tốt*
Đường thẳng có dạng: \(y=kx-1\)
Phương trình hoành độ giao điểm: \(x^2+kx-1=0\)
Theo Viet: \(\left\{{}\begin{matrix}x_A+x_B=-k\\x_Ax_B=-1\end{matrix}\right.\) \(\Rightarrow x_A^2+x_B^2=k^2+2\)
\(A\left(x_A;kx_A-1\right);B\left(y_B;kx_B-1\right)\)
Ta có: \(OA^2+OB^2=x_A^2+\left(kx_A-1\right)^2+x_B^2+\left(kx_B-1\right)^2\)
\(=\left(x_A^2+x_B^2\right)\left(k^2+1\right)-2k\left(x_A+x_B\right)+2\)
\(=\left(k^2+2\right)\left(k^2+1\right)-2k.\left(-k\right)+2\)
\(=k^4+5k^2+4\) (1)
\(AB^2=\left(x_A-x_B\right)^2+\left(kx_A-kx_B\right)^2\)
\(=\left(k^2+1\right)\left[\left(x_A+x_B\right)^2-4x_Ax_B\right]\)
\(=\left(k^2+1\right)\left(k^2+4\right)=k^4+5k^2+4\) (2)
(1);(2) \(\Rightarrow OA^2+OB^2=AB^2\) hay tam giác OAB luôn vuông tại O