K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

6 tháng 4 2016

Giả sử tọa độ M(x;0). Khi đó \(\overrightarrow{MA}=\left(1-x;2\right);\overrightarrow{MB}=\left(4-x;3\right)\)

Theo giả thiết ta có \(\overrightarrow{MA}.\overrightarrow{MB}=MA.MB.\cos45^0\)

\(\Leftrightarrow\left(1-x\right)\left(4-x\right)+6=\sqrt{\left(1-x\right)^2+4}.\sqrt{\left(4-x\right)^2+9}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow x^2-5x+10=\sqrt{x^2-2x+5}.\sqrt{x^2-8x+25}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow2\left(x^2-5x+10\right)^2=\left(x^2-5x+10\right)\left(x^2-8x+25\right)\) (do \(x^2-5x+10>0\))

\(\Leftrightarrow x^4-10x^3+44x^2-110x+75=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x^2-4x+15\right)=0\)

\(\Leftrightarrow x=1;x=5\)

Vậy ta có 2 điểm cần tìm là M(1;0) hoặc M(5;0)

20 tháng 10 2018

5 tháng 12 2018

Mặt phẳng cần tìm (P) đi qua M(0;0;2) và nhận  k → = 0 , 0 , 1  làm một VTPT nên có phương trình (P): z - 2 = 0

Chọn A.

1 tháng 6 2018

Đáp án C

Hình chiếu vuông góc của M(2;-1;4) lên mặt phẳng (Oxy)  điểm H(2;-1;0).

16 tháng 1 2020

Trung điểm I của AB là: \(I\left(5;6\right)\)

Ta gọi pt đường thẳng AB có dạng: \(y=ax+b\)

\(\rightarrow\left\{{}\begin{matrix}5=a.4+b\\7=a.6+b\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}a=1\\b=1\rightarrow\end{matrix}\right.AB:y=x+1\)

Gọi pt đường trung trực của AB là: \(y=ax+b\left(1\right)\)

Do (d) vuông góc với AB và d đi qua I nên:

\(\rightarrow\left\{{}\begin{matrix}a.1=-1\\6=a.4+b\end{matrix}\right.\)\(\rightarrow\left\{{}\begin{matrix}a=-1\\b=10\end{matrix}\right.\)\(\rightarrow\left(d\right):y=-x+10\)

17 tháng 1 2017

Chọn C.

Phương pháp:

Viết phương trình đường thẳng dưới dạng phương trình đoạn chắn.

Cách giải:

gọi Pt đường thảng .....y=ax+b(d)

d đi qua M(-1,1)   1=-a+b⇔b=a+1

gọi d cắt Ox tại \(A\left(-\dfrac{b}{a},O\right)\)

d cắt Oy tại \(B\left(O,b\right)\)

\(\Delta AOB\) vuông cân tại o

\(\Rightarrow OA=OB\Rightarrow\left(-\dfrac{b}{a}\right)^2+o^2=o^2+b^2\)

\(\dfrac{b^2}{a^2}=b^2\Leftrightarrow\dfrac{1}{a^2}=1\Leftrightarrow a^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=2\\b=0\left(loại\right)\end{matrix}\right.\)

(do d cắt 2 trục tọa độ nên a,b≠0)

vậy PtT đg thảng d:y=x+2

NV
18 tháng 8 2021

Gọi pt đường thẳng có dạng \(y=ax+b\)

Đường thẳng qua M tạo 2 trục tọa độ 1 tam giác vuông cân khi nó có hệ số góc \(a=1\) hoặc \(a=-1\)

\(\Rightarrow\left[{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\)

Thay tọa độ M vào phương trình ta được:

\(\left[{}\begin{matrix}1=-1+b\\1=-\left(-1\right)+b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=2\\b=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y=x+2\\y=-x\end{matrix}\right.\)

10 tháng 3 2019

Đáp án D

Tọa độ các điểm

x 2 + y 4 + z 6 = 1

1 tháng 10 2017

Đáp án D