K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

Chọn A

Tập xác định

Ta có:  Suy ra hàm số y = x - m 2 x + 1 đồng biến trên 

Do đó: 

Theo giả thiết: 

27 tháng 1 2018

Ta có đạo hàm y’ = 3( x+ m) 2≥0  với mọi x.

=> Hàm số đồng biến trên đoạn [1; 2] nên hàm số đạt GTLN tại x = 2.

Khi đó; y( 2) = 8 khi và chỉ khi : ( 2+m) 3 = 8 hay m= 0

Chọn C.

5 tháng 6 2018

Đáp án B.

Phương pháp:    

Sử dụng cách vẽ đồ thị hàm số  y = f x  

Cách giải:

Xét hàm số  y = x 2 + 2 x + m − 4 = f x  có:

y ' = 2 x + 2  

y ' = 0 ⇔ x = − 1  

Bảng biến thiên:

+)  m ≥ 5 :

M a x − 2 ; 1 x 2 + 2 x + m − 4 = f 1 = m − 1 = 4 ⇒ m = 5  

(Thỏa mãn)

+) 4 ≤ m < 5 :

M a x − 2 ; 1 x 2 + 2 x + m − 4 = M a x m − 1 ; 5 − m = 4  

m − 1 > 5 − m ,   ∀ m ∈ 4 ; 5 ⇒ m − 1 = 4 ⇒ m = 5

 (loại)

+) 1 ≤ m < 4 :  

M a x − 2 ; 1 x 2 + 2 x + m − 4 = M a x 5 − m ; m − 1 = 4.

m ∈ − 1 ; 3 ⇒ max y = 5 − m = 4 ⇔ m = 1    t m   

m ∈ − 1 ; 3 ⇒ max y = m − 1 = 4 ⇔ m = 5    k t m  

+) m < 1 :  

M a x − 2 ; 1 x 2 + 2 x + m − 4 = 5 − m = 4 ⇒ m = 1  

(Không thỏa mãn)

 

Vậy m ∈ 4 ; 1 ,  có hai giá trị của m thỏa mãn.