K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

Gọi đường thẳng đi qua A là d'.

a) Ta có: \(d'\perp d.\)

\(\Rightarrow\) VTPT của d là VTCP của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)

b) Ta có: \(d'//d.\)

\(\Rightarrow\) VTPT của d là VTPT của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)

5:

Gọi (d): y=ax+b là phương trình cần tìm

Theo đề, ta có hệ:
3a+b=-1 và 2a+b=3

=>a=-4 và b=11

=>y=-4x+11

4:

vecto BC=(1;-1)

=>AH có VTPT là (1;-1)

Phương trình AH là:

1(x-1)+(-1)(y+3)=0

=>x-1-y-3=0

=>x-y-4=0

10 tháng 5 2023

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

19 tháng 12 2021

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x+3=-3x-2\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

20 tháng 12 2021

\(a,\text{PT hoành độ giao điểm: }2x+3=-3x-2\Leftrightarrow x=-1\Leftrightarrow y=1\Leftrightarrow A\left(-1;1\right)\\ b,\text{Gọi đt đó là }y=ax+b\\ \Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\a=-1;b\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\Leftrightarrow y=-x\\ d,\text{Gọi đt cần tìm là }y=ax+b\\ \Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-1\end{matrix}\right.\Leftrightarrow y=-2x-1\)

21 tháng 12 2021

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x+3=-3x-2\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)