Cho hàm số y=ax+b. Tìm a, b của hàm số này biết đồ thị (D) của hàm số này đi qua điểm A(2;-1) và cắt trục hoành tại điểm B có hoành độ là XB=\(\dfrac{3}{2}\). Tính khoảng cách từ gốc tọa độ O đến đường thẳng (D).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Vì (d1)//(d) nên (d1): y=-2x+b
=>a=-2
Thay x=2 và y=1 vào (d1), ta được:
b-4=1
=>b=5
a:
\(a,\Leftrightarrow a+3=4\Leftrightarrow a=1\\ \Leftrightarrow y=x+3\\ c,\text{PT hoành độ giao điểm: }x+3=2x+5\Leftrightarrow x=-2\Leftrightarrow y=1\Leftrightarrow A\left(-2;1\right)\\ \text{Vậy tọa độ giao điểm 2 đths là }A\left(-2;1\right)\)
a: Thay x=-2 và y=3 vào (d), ta được:
-2a=3
hay a=-3/2
a: Thay x=1 và y=-2 vào y=ax, ta được:
1xa=-2
hay a=-2
b: Vì (d')//(d) nên a=2
Vậy: (d'): y=2x+b
Thay x=1 và y=4 vào (d'), ta được:
b+2=4
hay b=2
a: Thay x=-2 và y=6 vào (d), ta được:
-2a+4=6
=>-2a=2
=>a=2/-2=-1
b: a=-1 nên \(y=-x+4\)
\(b,\) PT giao Ox và Oy:
\(y=0\Leftrightarrow x=2\Leftrightarrow A\left(2;0\right)\Leftrightarrow OA=2\\ x=0\Leftrightarrow y=-4\Leftrightarrow B\left(0;-4\right)\Leftrightarrow OB=4\)
Gọi H là chân đường cao từ O đến (d)
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{4}+\dfrac{1}{16}=\dfrac{5}{16}\)
\(\Leftrightarrow OH^2=\dfrac{16}{5}\Leftrightarrow OH=\dfrac{4}{\sqrt{5}}\left(cm\right)\)
Vậy k/c là \(\dfrac{4}{\sqrt{5}}\left(cm\right)\)
\(c,\Leftrightarrow\left\{{}\begin{matrix}a=2;b\ne-4\\0a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)
Sorry, mk chưa học đồ thị bn ơi, đừng giận nha Huyền Anh Kute
bn ns gì trong hộp tin nhắn vậy, mk ko thấy vì bị quảng cáo che mất rồi Huyền Anh Kute
Hoành độ là mấy vậy bạn?