K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 5 2019

Đường tròn có tâm \(I\left(3;-1\right)\) bán kính \(R=5\)

Gọi H là hình chiếu vuông góc của I lên d \(\Rightarrow\) H là trung điểm AB theo tính chất đường tròn

\(\Rightarrow IH=\sqrt{IA^2-AH^2}=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=4\)

Do d đi qua \(M\left(10;-1\right)\) gọi phương trình d có dạng:

\(a\left(x-10\right)+b\left(y+1\right)=0\Leftrightarrow ax+by-10a+b=0\)

\(IH=d\left(I;d\right)=\frac{\left|3a-b-10a+b\right|}{\sqrt{a^2+b^2}}=4\)

\(\Leftrightarrow\left|7a\right|=4\sqrt{a^2+b^2}\Leftrightarrow49a^2=16a^2+32ab+16b^2\)

\(\Leftrightarrow33a^2-32ab-16b^2=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{4}{3}b\\a=-\frac{4}{11}b\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}\frac{4}{3}bx+by-10.\frac{4}{3}b+b=0\\-\frac{4}{11}bx+by+10.\frac{4}{11}b+b=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4x+3y-37=0\\-4x+11y+51=0\end{matrix}\right.\)

1 tháng 5 2023

Gọi \(M\left(2;y_M\right)\) là tiếp điểm của (C):

\(\Leftrightarrow2^2+y_M^2-12+2y_M=0\)

\(\Leftrightarrow y_M^2+2y_M-8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y_M=2\\y_M=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}M\left(2;2\right)\\M\left(2;-4\right)\end{matrix}\right.\)

* Với M(2;2)

Ta có: \(\overrightarrow{u}=\overrightarrow{IE}=\left(-1;3\right)\Rightarrow\overrightarrow{n}=\left(3;1\right)\)

\(\Rightarrow\left(D\right):3x+y-8=0\)

* Với M(2; -4)

Ta có: \(\overrightarrow{u}=\overrightarrow{IE}=\left(-1;-3\right)\Rightarrow\overrightarrow{n}=\left(-3;1\right)\)

\(\Rightarrow\left(D\right):-3x+y+4=0\)

28 tháng 3 2018

Đường tròn (C) có tâm I( 3;1). Gọi d là tiếp tuyến của đường tròn (C) tại điểm A; khi đó d và IA vuông góc với nhau.

⇒ I A → = ( 1 ; 3 )

là vectơ pháp tuyến của d.

Suy ra phương trình d: 1( x-4) + 3( y-4 ) =0

Hay x+ 3y -16 = 0.

Chọn D.

NV
30 tháng 3 2023

Đường tròn (C) tâm \(I\left(1;-1\right)\) bán kính \(R=1\)

\(\Rightarrow\overrightarrow{IM}=\left(2;5\right)\Rightarrow IM=\sqrt{29}\)

Gọi H là trung điểm AB \(\Rightarrow IM\perp AB\) tại H \(\Rightarrow IH=d\left(I;AB\right)\)

Áp dụng hệ thức lượng trong tam giác vuông AIM:

\(IA^2=IH.IM\Rightarrow IH=\dfrac{R^2}{IM}=\dfrac{1}{\sqrt{29}}\)

Đường thẳng AB vuông góc IM nên nhận (2;5) là 1 vtpt

Phương trình AB có dạng: \(2x+5y+c=0\)

Do \(d\left(I;AB\right)=IH=\dfrac{1}{\sqrt{29}}\) \(\Rightarrow\dfrac{\left|2.1-5.1+c\right|}{\sqrt{2^2+5^2}}=\dfrac{1}{\sqrt{29}}\)

\(\Rightarrow\left|c-3\right|=1\Rightarrow\left[{}\begin{matrix}c=4\\c=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x+5y+2=0\\2x+5y+4=0\end{matrix}\right.\)

Mặt khác I và M nằm ở hai phía so với đường thẳng AB \(\Rightarrow\) đường thẳng có pt \(2x+5y+4=0\) không thỏa mãn do \(\left(2.3+5.4+4\right).\left(2.1-5.1+4\right)>0\)

Vậy pt đường thẳng AB là: \(2x+5y+2=0\)

30 tháng 3 2023

BÀi này có vẽ hình ko ạ tại vẽ hình dễ hiểu hơn

 

24 tháng 4 2023

\(PT\left(C\right):\left(x+1\right)^2+\left(y-7\right)^2=85\)

\(\Rightarrow\) Tâm \(I\left(-1;7\right)\) và bán kính là \(\sqrt{85}\)

PT tiếp tuyến qua \(M\left(1;-2\right)\Rightarrow x_0=1,y_0=-2\)

\(PT\) tiếp tuyến có dạng \(\left(a-x_0\right)\left(x-x_0\right)+\left(b-y_0\right)\left(y-y_0\right)=0\)

\(\Leftrightarrow\left(-1-1\right)\left(x-1\right)+\left(7+2\right)\left(y+2\right)=0\)

\(\Leftrightarrow-2\left(x-1\right)+9\left(y+2\right)=0\)

\(\Leftrightarrow-2x+2+9y+18=0\)

\(\Leftrightarrow-2x+9y+20=0\)

 

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Đường tròn có tâm \(I\left( {3; - 7} \right)\).

Phương trình tiếp tuyến tại điểm \(M\left( { - {\rm{ }}1{\rm{ }};--4} \right)\) thuộc đường tròn \({\left( {x - 3} \right)^2} + {\left( {y + 7} \right)^2} = 25\) là: \(\left( { - 1 - 3} \right)\left( {x + 1} \right) + \left( { - 4 + 7} \right)\left( {y + 4} \right) = 0 \Leftrightarrow  - 4\left( {x + 1} \right) + 3\left( {y + 4} \right) = 0 \Leftrightarrow  - 4x + 3y + 8 = 0\)  

a: MN lớn nhất

=>MN là đường kính

=>Δ: y=ax+b đi qua A(3;0) và I(-1;2)

Ta có hệ pt:

3a+b=0 và -a+b=2

=>a=-1/2 và b=1/2

b: Kẻ IH vuông góc MN

MN nhỏ nhất khi H trùng với A

=>vecto IA=(4;-2)

Δ có phương trình là:

4(x-3)+(-2)(y-0)=0

=>4x-12-2y=0

24 tháng 5 2023

fdbxdg

4 tháng 4 2021

a, Phương trình tiếp tuyến đi qua M: \(ax+by-3a+b=0\left(\Delta\right)\)

Đường tròn đã cho có tâm \(I=\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{5}\)

\(\Leftrightarrow\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a-2b\right)^2=0\)

\(\Leftrightarrow a=2b\)

\(\Rightarrow\Delta:2x+y-5=0\)

4 tháng 4 2021

b, Phương trình tiếp tuyến: \(\left(d\right)2x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;d\right)=\dfrac{\left|2.1-1.\left(-2\right)+m\right|}{\sqrt{5}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+4\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}d:2x-y+1=0\\d:2x-y-9=0\end{matrix}\right.\)