tính tổng của các đa thức sau: xy+x2y2+x3y3+...+x10y10 tại x=1; y=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: xy + x2y2 + x3y3 + ….. + x10y10
= xy + (xy)2 + (xy)3 + ….. + (xy)10
Với x = -1 và y = 1 ta có: xy = -1.1 = -1
Thay vào đa thức:
-1 + (-1)2 + (-1)3 + ….. + (-1)10 = -1 + 1 + (-1) + 1 + … + (-1) + 1 = 0
Lời giải:
Với $x=3, y=\frac{1}{3}$ thì $xy=3.\frac{1}{3}=1$
Khi đó:
$A=xy+(xy)^2+(xy)^4+...+(xy)^{2022}=1+1^2+1^4+...+1^{2022}$
$=\underbrace{1+1+....+1}_{1012}=1012.1=1012$
b. Đề thiếu dữ kiện về $x,y$
Cách 1 : Gọi B = xy – x2y2 + x4y4 – x6y6 + x8y8
Thay x = –1 ; y = –1 vào biểu thức.
B = (–1).(–1) – (–1)2.(–1)2+ (–1)4.(–1)4 – (–1)6.(–1)6 + (–1)8.(–1)8
= + 1 – 1.1 + 1.1 – 1.1+ 1.1
= 1 – 1 + 1 – 1 + 1
= 1
Cách 2: Khi x = -1, y = -1 thì x.y = (-1).(-1) = 1.
Có : B = xy – x2y2 + x4y4 – x6y6 + x8y8 = xy – (xy)2 + (xy)4 – (xy)6 + (xy)8 = 1 - 1 + 1 - 1 + 1 = 1
Đáp án D
Cho x,y > 0 thỏa mãn 2 ( x 2 + y 2 ) + x y = ( x + y ) ( 2 + x y ) ⇔ 2 ( x + y ) 2 - ( 2 + x y ) ( x + y ) - 3 x y = 0 (*)
Đặt x + y = u x y = v ta đc PT bậc II: 2 u 2 - ( v + 2 ) u - 3 = 0 gải ra ta được u = v + 2 + v 2 + 28 v + 4 4
Ta có P = 4 ( x 3 y 3 + y 3 x 3 ) - 9 ( x 2 y 2 + y 2 x 2 ) = 4 ( x y + y x ) 3 - 9 ( x y + y x ) 2 - 12 ( x y + y x ) + 18 , đặt t = ( x y + y x ) , ( t ≥ 2 ) ⇒ P = 4 t 3 - 9 t 2 - 12 t + 18 ; P ' = 6 ( 2 t 2 - 3 t + 2 ) ≥ 0 với ∀ t ≥ 2 ⇒ M i n P = P ( t 0 ) trong đó t 0 = m i n t = m i n ( x y + y x ) với x,y thỏa mãn điều kiện (*).
Ta có :
t = ( x y + y x ) = ( x + y ) 2 x y - 2 = u 2 v - 2 = ( v + 2 + v 2 + 28 v + 4 ) 2 16 v - 2 = 1 16 ( v + 2 v + v + 4 v + 28 ) 2 - 2 ≥ 1 16 ( 2 2 + 32 ) 2 - 2 = 5 2
Vậy m i n P = P ( 5 2 ) = 4 . ( 5 2 ) 2 - 9 ( 5 2 ) 2 - 12 . 5 2 + 18 = - 23 4
Ta có: M = x3 + xy + y2 – x2y2 – 2 và N = x2y2 + 5 – y2
⇒ M + N = (x3 + xy + y2 – x2y2 – 2) + (x2y2 + 5 – y2)
= x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2
= x3 + (– x2y2 + x2y2) + (y2 – y2) + xy + (– 2 + 5)
= x3 + 0 + 0 + xy + 3
= x3 + xy + 3.
(5x2y – 5xy2 + xy) + (xy – x2y2 + 5xy2)
= 5x2y – 5xy2 + xy + xy – x2y2 + 5xy2
= 5x2y + (5xy2 – 5xy2) + (xy + xy) – x2y2
= 5x2y + 2xy – x2y2
Thay tại x = 1 và y = -1 vào đa thức, ta có:
12.(-1)2 + 14.(-1)4 + 16.(-1)6 = 1.1 + 1.1 + 1.1 = 3
Bài 3:
a: Ta có: C=A+B
\(=x^2-2y+xy+1+x^2+y-x^2y^2-1\)
\(=2x^2-y+xy-x^2y^2\)
b: Ta có: C+A=B
\(\Leftrightarrow C=B-A\)
\(=x^2+y-x^2y^2-1-x^2+2y-xy-1\)
\(=-x^2y^2+3y-xy-2\)
Lời giải:
Tại $x=1; y=-1$ thì $xy=-1$
$xy+(xy)^2+(xy)^3+...+(xy)^{10}$
$=(-1)+(-1)^2+(-1)^3+...+(-1)^{10}=(-1)+1+(-1)+1+(-1)+1+(-1)+1+(-1)+1=0$