K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: Để hàm số đồng biến khi x>0 thì m-1>0

hay m>1

b: Để hàm số nghịch biến khi x>0 thì 3-m<0

=>m>3

c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0

hay 0<m<1

19 tháng 2 2022

a, đồng biến khi m - 1 > 0 <=> m > 1 

b, nghịch biến khi 3 - m < 0 <=> m > 3 

c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0 

Ta có m - 1 < m 

\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)

22 tháng 11 2023

loading...  loading...  loading...  

22 tháng 11 2023

tròi oi a viết chữ xấu wá đi à, đọc bài của a mà đau mắt wá

23 tháng 11 2021

a) Hàm đồng biến khi \(m-2>0\Leftrightarrow m>2\)

b) Hàm nghịch biến khi \(m-2< 0\Leftrightarrow m< 2\)

DT
12 tháng 12 2023

loading... 

26 tháng 12 2021

a, để hàm số nghịch biến thì \(2m+3< 0\Rightarrow m< -\dfrac{3}{2}\)

để hàm số đồng biến thì \(2m+3>0\Rightarrow m>-\dfrac{3}{2}\)

b, Để hàm số y = (2m+3)x-2 song song với đường thẳng y = -5x+3 thì 

\(\left\{{}\begin{matrix}2m+3=-5\\-2\ne3\end{matrix}\right.\Rightarrow m=-4\)

NV
30 tháng 3 2023

a.

Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)

b.

Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)

\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)

c.

Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)

\(\Rightarrow m>-\dfrac{3}{2}\)

11 tháng 3 2018

(Lưu ý:

Hàm số y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0.)

a) y = (m – 2)x + 3 đồng biến khi m – 2 > 0 ⇔ m > 2

Vậy với m > 2 thì hàm số đồng biến.

b) y = (m – 2)x + 3 nghịch biến khi m – 2 < 0 ⇔ m < 2

Vậy với m < 2 thì hàm số nghịch biến.

30 tháng 10 2021

) Điều kiện để hàm số xác định là m≥0m≥0; x∈Rx∈R

Để hàm số đã cho là hàm bậc nhất thì m√+3√m√+5√≠0m+3m+5≠0

Vì m−−√+3–√≥0+3–√>0m+3≥0+3>0 với mọi m≥0m≥0 nên m−−√+3–√≠0,∀m≥0m+3≠0,∀m≥0

⇒m√+3√m√+5√≠0⇒m+3m+5≠0 với mọi m≥0m≥0

Vậy hàm số là hàm bậc nhất với mọi m≥0m≥0

b)

Để hàm đã cho nghịch biến thì m√+3√m√+5√<0m+3m+5<0

Điều này hoàn toàn vô lý do {m−−√+3–√≥3–√>0m−−√+5–√≥5–√>0{m+3≥3>0m+5≥5>0

Vậy không tồn tại mm để hàm số đã cho nghịch biến trên R

Giải thích các bước giải:

30 tháng 10 2021

câu c đâu rui bạn oi