Câu 2 Tính giá trị của biểu thức A = x2 - 6xy + 9y2 - 15 tại x = 37 ; y = -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 9x2+6xy+y2
= (3x)2+2.3x.y+y2
=(3x+y)2
b) x2 + 4xy + y2
=x2 + 2xy + y2 + 2xy
= (x+y)2+2xy
\(a.9x^2+6xy+y^2\\ =\left(3x+y\right)^2\\ b.x^2+4xy+y^2\\ =\left(x+y\right)^2+2xy\)
A=2x^2+9y^2-6xy-6x-12y+2024
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2024
A = (x -3y)^2 +4(x -3y) + 4 + x^2 -10x +25 + 1995
A = (x -3y +2)^2 + (x -5)^2 + 1995 \geq 1995
Min A = 1995
x - 5 = 0 => x = 5
Và x - 3y + 2 = 0 hay 5 -3y +2 = 0 => -3y = -7 => y = 7/3
\(K\)\(nha!~!\)
a: \(N=\left(5x\right)^3-\left(2y\right)^3=1^3-1^3=0\)
b: \(Q=x^3+27y^3=\dfrac{1}{8}+\dfrac{27}{8}=\dfrac{28}{8}=\dfrac{7}{2}\)
Ta có \(x^2-6xy+9y^2-3x=0\left(1\right)\)
\(\Leftrightarrow3x=\left(x-3y\right)^2⋮3\Rightarrow3x=\left(x-3y\right)^2⋮9\)
\(\Rightarrow x⋮3\)
Mà \(x\) là số nguyên tố nên \(x=3\)
\(\left(1\right)\Leftrightarrow3x=\left(x-3y\right)^2\)
\(\Leftrightarrow9=\left(9-3y\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=4\end{matrix}\right.\)
Thử lại được \(x=3;y=2\)
a) \(P=x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2=5^2-4^2=9\)
b) \(Q=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=0\)
Lời giải:
$A=(x-3y)^2-15=[37-3(-1)]^2-15=40^2-15=1585$
Câu 1 Thực hiện phép tính :
a) 2x( 3x2 - 4x + 2 )
b) 2x( 3x + 5 ) - 3 ( 2x2 - 2x + 3 )
GIẢI GIÙM EM ĐC KO Ạ