Giả sử x = ; y = ( a, b, m ∈ Z, b # 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = thì ta có x < z < y
Mình không hiểu lắm chỉ chi tiết nhá
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử x = a/m, y = b/m (a, b, m ∈ Z, b # 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = (a + b)/2m thì ta có x < z < y.
Đặt
u = x - 2 d v = sin 3 x d x ⇒ d u = d x v = - cos 3 x 3
Khi đó
∫ x - 2 sin 3 x d x = - x - 2 cos 3 x 3 + 1 9 sin 3 x + C
Suy ra m = 2; n = 3; p = 9
Vậy m + n + p = 14
Đáp án A
Ta có 2*(5*x) = 1
<=> 3.2 - (5*x) = 1
<=> 6 - (3.5 - x) = 1
<=> 6 - (15-x) = 1
<=> 6 - 15 + x = 1
<=> (-9) + x = 1
<=> x = 10
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
đời m` chỉ gắn liền vs chữ cop