K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

Áp dụng bđt cosi ta có : 

P = (6/5.x + 30/x) + (y/5 + 5/y) + 4/5.(x+y) 

>= 2\(\sqrt{\frac{6x}{5}.\frac{30}{x}}\)+ 2\(\sqrt{\frac{y}{5}.\frac{5}{y}}\) + 4/5.(x+y)

  = 2.6+2.1+4/5.(x+y)

>= 12+2+4/5.10 = 22

Dấu "=" xảy ra <=> x=y=5

Vậy GTNN của P = 22 <=> x=y=5

Tk mk nha

28 tháng 8 2020

x+ y2 + 10x + 6y + 34 = 0

=> (x2 + 10x + 25) + (y2 + 6y + 9) = 0

=> (x + 5)2 + (y + 3)2 = 0

=> \(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Vậy x = - 5 ; y = -3

b) 25x2 + 4y2 + 10x + 4y + 2 = 0

=> (25x2 + 10x + 1) + (4y2 + 4y + 1) = 0

=> (5x + 1)2 + (2y + 1)2 = 0

=> \(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,2\\y=-0,5\end{cases}}\)

Vậy x = -0,2 ; y = -0,5

28 tháng 8 2020

a) 

\(x^2+10x+25+y^2+6y+9=0\)    

\(\left(x+5\right)^2+\left(y+3\right)^2=0\)  ( 1 ) 

Ta có : 

\(\left(x+5\right)^2\ge0\forall x\) 

\(\left(y+3\right)^2\ge0\forall y\) 

\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\)   

\(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\)         

\(\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)   

b) 

\(25x^2+10x+1+4y^2+4y+1=0\)     

\(\left(5x+1\right)^2+\left(2y+1\right)^2=0\) ( 1 ) 

Ta có : 

\(\left(5x+1\right)^2\ge0\forall x\)      

\(\left(2y+1\right)^2\ge0\forall y\)  

\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(5x+1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)   

\(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\)    

\(\hept{\begin{cases}x=\frac{-1}{5}\\y=\frac{-1}{2}\end{cases}}\)

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:
Đặt $\frac{x}{3}=\frac{y}{5}=t(t\neq 0)$

$\Rightarrow x=3t; y=5t$

Khi đó:

$\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5(3t)^2+3(5t)^2}{10(3t)^2-3(5t)^2}=\frac{120t^2}{15t^2}=8$

11 tháng 9 2023

\(10x=14y=15z\)

\(BCNN\left(10;14;15\right)=2.3.5.7=210\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{210}{10}=21\\y=\dfrac{210}{14}=15\\z=\dfrac{210}{15}=14\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(21;15;14\right)\)

13 tháng 4 2019

Đáp án B

Do AB và BC cắt nhau tại B nên toa độ điểm B là nghiệm hệ phương trình

Do đó: B( 2; -1)

Tương tự: tọa độ điểm C( 1; 9)

PT các đường phân giác góc A là:

Đặt T1(x; y) = 2x- 6y+ 7 và T2= 12x+ 4y-3  ta có:

T1(B). T1(C) < 0 và T2(B) T2(C) >0.

Suy ra B và C nằm khác phía so với đường thẳng 2x-6y+7= 0 và cùng phía so với đường thẳng: 12x+ 4y- 3= 0.

Vậy phương trình đường phân giác trong góc A là: 2x- 6y+ 7= 0.

20 tháng 1 2020

bạn làm được chưa vậy nếu làm được thì cho mình xin cách giải với!!!!