K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

Áp dụng bđt cosi ta có : 

P = (6/5.x + 30/x) + (y/5 + 5/y) + 4/5.(x+y) 

>= 2\(\sqrt{\frac{6x}{5}.\frac{30}{x}}\)+ 2\(\sqrt{\frac{y}{5}.\frac{5}{y}}\) + 4/5.(x+y)

  = 2.6+2.1+4/5.(x+y)

>= 12+2+4/5.10 = 22

Dấu "=" xảy ra <=> x=y=5

Vậy GTNN của P = 22 <=> x=y=5

Tk mk nha

14 tháng 9 2016

1) (12x^2-12xy+3y^2)-10x(2x-y)+8=3(2x-y)^2-10x(2x-y)+8=(2x-y)(6x-3y-10x)+8=8-(2x-3y)(4x+3y)

2) áp dụng BĐT cauchy ta có (x+y)(y+z)(z+x)\(\ge\)\(2\sqrt{xy}\).\(2\sqrt{yz}\).\(2\sqrt{xz}\)=8xyz

dấu đẳng thức xảy ra khi x=y=z

9 tháng 8 2020

\(Tacó\):   \(C=x^2+2xy+y^2+y^2-6y+15\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+6\)

\(=\left(x+y\right)^2+\left(y-3\right)^2+6\)

\(Mà\)\(\left(x+y\right)^2\ge0\)với mọi x,y

             \(\left(y-3\right)^2\ge0\)với mọi y

\(\Rightarrow\left(x+y\right)^2+\left(y-3\right)^2+6>0\)

\(Hay\)\(x^2+2xy+y^2+y^2-6y+15>0\)\

       

8 tháng 8 2020

Ta có C = (x2 + 2xy + y2) + (y2 - 6x + 9) + 6 

= (x + y)2 + (y - 3)2 + 6 \(\ge6>0\)(đpcm)

9 tháng 8 2020

C = x2 + 2xy + y2 + y2 - 6y + 15 

C = ( x2 + 2xy + y2 ) + ( y2 - 6y + 9 ) + 6

C = ( x + y )2 + ( y - 3 )2 + 6 ≥ 6 > 0 ∀ x ( đpcm )

D = x2 + y2 + 6x + 10y + 30

D = ( x2 + 6x + 9 ) + ( y2 + 10y + 25 ) - 4

D = ( x + 3 )2 + ( y + 5 )2 - 4 ≥ -4 ( xem lại đề nhớ )

NV
7 tháng 5 2020

1.

\(y\left(0\right)=-4\) ; \(y\left(5\right)=-4\) ; \(y\left(\frac{5}{3}\right)=\frac{392}{27}\)

\(\Rightarrow y_{max}=\frac{392}{27}\) khi \(x=\frac{5}{3}\)

2.

\(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)

\(3x+m\le0\Rightarrow x\le-\frac{m}{3}\)

Hệ có nghiệm khi \(-\frac{m}{3}\ge\frac{1}{2}\Rightarrow m\le-\frac{3}{2}\)

3.

\(P=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)

\(P\ge2\sqrt{\frac{a+b}{a+b}}+\frac{3}{1}=5\)

\(P_{min}=5\) khi \(a=b=\frac{1}{2}\)

4.

\(y=2x+\frac{3}{x}\ge2\sqrt{\frac{6x}{x}}=2\sqrt{6}\)

Dấu "=" xảy ra khi \(2x=\frac{3}{x}\Leftrightarrow x=\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{2}\)

17 tháng 5 2020

cảm ơn bạn nha haha

8 tháng 12 2019

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

  • \(\frac{x+y}{3}=\frac{y+z}{4}=\frac{x+z}{5}=\frac{y+z-\left(x+y\right)}{4-3}=\frac{y+z-x-y}{1}=\frac{z-x}{1}\)

\(\Rightarrow\frac{x+z}{5}=\frac{z-x}{1}\)\(\Rightarrow x+z=5\left(z-x\right)\)\(\Rightarrow x+z=5z-5x\)\(\Rightarrow x+5x=5z-z\)\(\Rightarrow6x=4z\)\(\Rightarrow\frac{x}{4}=\frac{z}{6}\)(1)

  • \(\frac{x+y}{3}=\frac{y+z}{4}=\frac{x+z}{5}=\frac{x+z-\left(z+y\right)}{5-4}=\frac{x+z-z-y}{1}=\frac{x-y}{1}\)

\(\Rightarrow\frac{x+y}{3}=\frac{x-y}{1}\)\(\Rightarrow3\left(x-y\right)=x+y\)\(\Rightarrow3x-3y=x+y\)\(\Rightarrow3x-x=y+3y\)\(\Rightarrow2x=4y\)\(\Rightarrow\frac{x}{4}=\frac{y}{2}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{6}=k\)\(\Rightarrow\hept{\begin{cases}x=4k\\y=2k\\z=6k\end{cases}}\)

Ta có: \(M=10x+y-7z+2019\)

\(\Rightarrow M=10.4k+2k-7.6k+2019\)

\(\Rightarrow M=40k+2k-42k+2019=2019\)

Vậy M = 2019

8 tháng 12 2019

mk đang cần gấp ae giúp mk với huhu:((

15 tháng 7 2018

Diệp Thiên Lạc, bạn là army của BTS đúng ko ??? ( đừng nhắc nội quy nha, mik chỉ hỏi cho vui thôi >_<)

15 tháng 7 2018

a/ Ta có \(x^2-10x+30\)

\(x^2-2x.5+25+5\)

\(\left(x-5\right)^2+5\)

Mà \(\left(x-5\right)^2\ge0\)với mọi giá trị của x

=> \(\left(x-5\right)^2+5>0\)với mọi giá trị của x (đpcm)

b/ Ta có \(16x^2+24x+27\)

\(\left(4x\right)^2+8x.3+9+18\)

\(\left(4x+3\right)^2+18\)

Mà \(\left(4x+3\right)^2\ge0\)với mọi giá trị của x

=> \(\left(4x+3\right)^2+18>0\)với mọi giá trị của x (đpcm)

8 tháng 9 2016

\(\text{Tìm x:}\)

\(a.x\left(x-1\right)-3x+3x=0\)

\(x\left(x-1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

\(b.3x\left(x-2\right)+10-5x=0\)

\(3x^2-6x+10-5x=0\)

\(3x^2-11x+10=0\)

\(3x^2-11x=-10\)(bn xem lại đề nhé)

\(c.x^3-5x^2+x-5=0\)

\(x^3-5x^2+x=5\)

\(d.x^4-2x^3+10x^2-20x=0\)


 

8 tháng 9 2016

bài 1:phân tích thành phân tử

  a> x^2-6x-y^2+9

= (x-3)^2 -y^2

= (x-3 -y) (x-3+y)

b>x^2-xy-8x+8y

= x(x-y) - 8(x-y)

= (x-8) (x-y)

c>25-4x^2-4xy-y^2

= 5^2 - (2x + y)^2 

= (5 - 2x -y) (5 +2x+y) 

d>xy-xz-y+z

= x(y-z) - (y-z)

= (x-1) (y-z)

e>x^2-xz-yz+2xy+y^2

= (x+y)^2 - z(x+y)

= (x+y-z) (x+y)

g>x^2-4xy+4y^2-z^2-4zt-4t^2

= (x-2y)^2 - (z + 2t)^2 

= (x-2y -x-2t) (x-2y + z +2t)

bài 2:tìm X bt 

a>x.(x-1)-3x+3x=0

x (x-1) =0

\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy x=0 và x=1

b>3x.(x-2)+10-5x=0

3x(x-2) - 5 (x-2)=0

(3x-5) (x-2) =0

\(\Rightarrow\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=5\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}}}\)

c>x^3-5x^2+x-5=0

x^2 (x-5) + (x-5) =0

(x^2 +1)(x-5) =0

\(\Rightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=-1\\x=5\end{cases}\Rightarrow}\hept{\begin{cases}x\in\varphi\\x=5\end{cases}}}\)

Vậy x=5

d>x^4-2x^3+10x^2-20x=0

x^3 (x-2) + 10x(x-2) =0 

(x^3 + 10x) (x-2) =0

x(x^2 + 10) (x-2) =0

\(\Rightarrow\hept{\begin{cases}x=0\\x^2+10=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-10\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varphi\\x=2\end{cases}}}}\)

Vậy x=0 và x=2