Giúp mik bài này với :
Bài 4 : Tìm cặp ( x ; y ) nguyên thỏa mãn :
a) xy - 2x = y - 3
b) 2xy + x + y = 4
c) xy - 2x - y = -4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có \(\left|x-3y\right|^5\ge0\);\(\left|y+4\right|\ge0\)
\(\rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\)
mà \(\left|x-3y\right|^5+\left|y+4\right|=0\)
\(\rightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
b) Tương tự câu a, ta có:
\(\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)
c. Tương tự, ta có:
\(\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\\left|y+2\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-2\end{matrix}\right.\)
a. \(\left|x-3y\right|^5\ge0,\left|y+4\right|\ge0\Rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\) Vậy...
b. \(\left|x-y-5\right|\ge0,\left(y-3\right)^4\ge0\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\) Vậy ...
c. \(\left|x+3y-1\right|\ge0,3\cdot\left|y+2\right|\ge0\Rightarrow\left|x+3y-1\right|+3\left|y+2\right|\ge0\) \(\Rightarrow VT\ge VP\) Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\3\left|y+2\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-\left(-2\right)\cdot3=7\\y=-2\end{matrix}\right.\) Vậy...
Ta có: 2x2 - 2xy + x + y = 14
=>2x(x-y)+2x-x+y-1=13
=>2x(x-y+1)-(x-y+1)=13
=>(2x-1)(x-y+1)=13
Ta có bảng sau
2x-1 | 13 | 1 | -1 | -13 |
x-y+1 | 1 | 13 | -13 | -1 |
x | 7 | 1 | 0 | -6 |
y | 7 | -11 | -14 | -4 |
Vậy các cặp (x,y) thỏa mãn là(7,7);(1,-11);(0,-14);(-6,-4)
Do \(\left|x\right|,\left|x^2+x\right|\ge0\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x^2+x=0\end{matrix}\right.\)
\(\Rightarrow x=0\)
\(a,\frac{x+8}{3}+\frac{x+7}{2}=-\frac{x}{5}\)
\(\Leftrightarrow\frac{10\cdot\left(x+8\right)}{30}+\frac{15\left(x+7\right)}{30}=\frac{-6x}{30}\)
\(\rightarrow10x+80+15x+105=-6x\)
\(\Leftrightarrow31x+185=0\)
\(\Leftrightarrow x=-\frac{185}{31}\)
b,\(b,\frac{x-8}{3}+\frac{x-7}{4}=4+\frac{1-x}{5}\)
\(\Leftrightarrow\frac{20\left(x-8\right)}{60}+\frac{15\left(x-7\right)}{60}=\frac{240}{60}+\frac{12\left(1-x\right)}{60}\)
\(\rightarrow20x-160+15x-105=240+12-12x\)
\(\Leftrightarrow47x-517=0\)\(\Leftrightarrow x=11\)
Lời giải:
$2x+xy-2y=7$
$x(2+y)-2y=7$
$x(2+y)-2(y+2)=3$
$(x-2)(y+2)=3$
Do $x,y$ là số nguyên nên $x-2, y+2$ cũng là số nguyên. Do đó ta có bảng sau:
x-2 | 1 | 3 | -1 | -3 |
y+2 | 3 | 1 | -3 | -1 |
x | 3 | 5 | 1 | -1 |
y | 1 | -1 | -5 | -3 |
Kết luận | thỏa mãn | thỏa mãn | thỏa mãn | thỏa mãn |
\(2x+xy-2y=7\)
\(\Rightarrow x\left(2+y\right)-2y-4+4=7\)
\(\Rightarrow x\left(2+y\right)-2\left(y+2\right)=3\)
\(\Rightarrow\left(x-2\right)\left(y+2\right)=3\)
\(\Rightarrow\left(x-2\right);\left(y+2\right)\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;-5\right);\left(3;1\right);\left(-1;-3\right);\left(5;-1\right)\right\}\left(x;y\inℤ\right)\)
trả lời
5x-3 -20 = 105
5x-3 = 105 + 20
5x-3 = 125
5x-3 = 53
x-3 = 3
x =3+3
x = 6
Vậy x = 6